BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12032602)

  • 1. Monitoring Population Size, Activity, and Distribution of gfp-luxAB-Tagged Pseudomonas fluorescens SBW25 during Colonization of Wheat.
    Unge A; Jansson J
    Microb Ecol; 2001 Feb; 41(4):290-300. PubMed ID: 12032602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field.
    Jäderlund L; Hellman M; Sundh I; Bailey MJ; Jansson JK
    FEMS Microbiol Ecol; 2008 Feb; 63(2):156-68. PubMed ID: 18093144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system.
    Unge A; Tombolini R; Molbak L; Jansson JK
    Appl Environ Microbiol; 1999 Feb; 65(2):813-21. PubMed ID: 9925621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring physiological status of GFP-tagged Pseudomonas fluorescens SBW25 under different nutrient conditions and in soil by flow cytometry.
    Maraha N; Backman A; Jansson JK
    FEMS Microbiol Ecol; 2004 Dec; 51(1):123-32. PubMed ID: 16329861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Interactions between
    Boiteau RM; Markillie LM; Hoyt DW; Hu D; Chu RK; Mitchell HD; Pasa-Tolic L; Jansson JK; Jansson C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33402348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of
    Guan Y; Bak F; Hennessy RC; Horn Herms C; Elberg CL; Dresbøll DB; Winding A; Sapkota R; Nicolaisen MH
    mSphere; 2024 Jun; ():e0029424. PubMed ID: 38904362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25.
    Preston GM; Bertrand N; Rainey PB
    Mol Microbiol; 2001 Sep; 41(5):999-1014. PubMed ID: 11555282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25.
    Naren N; Zhang XX
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32291279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation.
    Caldwell CJ; Hynes RK; Boyetchko SM; Korber DR
    Can J Microbiol; 2012 Jan; 58(1):1-9. PubMed ID: 22188391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.
    Humphris SN; Bengough AG; Griffiths BS; Kilham K; Rodger S; Stubbs V; Valentine TA; Young IM
    FEMS Microbiol Ecol; 2005 Sep; 54(1):123-30. PubMed ID: 16329978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7.
    Prieto P; Mercado-Blanco J
    FEMS Microbiol Ecol; 2008 May; 64(2):297-306. PubMed ID: 18336554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties.
    Trippe K; McPhail K; Armstrong D; Azevedo M; Banowetz G
    BMC Microbiol; 2013 May; 13():111. PubMed ID: 23688329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization.
    Zhang XX; Rainey PB
    Mol Plant Microbe Interact; 2007 May; 20(5):581-8. PubMed ID: 17506335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.
    Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history.
    Huang WE; Bailey MJ; Thompson IP; Whiteley AS; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):414-25. PubMed ID: 17334857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved mechanism for nitrile metabolism in bacteria and plants.
    Howden AJ; Harrison CJ; Preston GM
    Plant J; 2009 Jan; 57(2):243-53. PubMed ID: 18786181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation.
    Noirot-Gros MF; Shinde S; Larsen PE; Zerbs S; Korajczyk PJ; Kemner KM; Noirot PH
    Front Microbiol; 2018; 9():853. PubMed ID: 29774013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.