BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12032696)

  • 21. Epigenetic control of centromere: what can we learn from neocentromere?
    Kim T
    Genes Genomics; 2022 Mar; 44(3):317-325. PubMed ID: 34843088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Class II neocentromeres: a putative common neocentromere site in band 4q21.2.
    Warburton PC; Barwell J; Splitt M; Maxwell D; Bint S; Ogilvie CM
    Eur J Hum Genet; 2003 Oct; 11(10):749-53. PubMed ID: 14512964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First prenatally detected small supernumerary neocentromeric derivative chromosome 13 resulting in a non-mosaic partial tetrasomy 13q.
    Mascarenhas A; Matoso E; Saraiva J; Tönnies H; Gerlach A; Julião MJ; Melo JB; Carreira IM
    Cytogenet Genome Res; 2008; 121(3-4):293-7. PubMed ID: 18758175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering mammalian chromosomes.
    Grimes B; Cooke H
    Hum Mol Genet; 1998; 7(10):1635-40. PubMed ID: 9735385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neocentromeres: role in human disease, evolution, and centromere study.
    Amor DJ; Choo KH
    Am J Hum Genet; 2002 Oct; 71(4):695-714. PubMed ID: 12196915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered minichromosomes in plants.
    Birchler JA
    Chromosome Res; 2015 Feb; 23(1):77-85. PubMed ID: 25596825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of chromosome-based vectors for animal transgenesis.
    Kuroiwa Y; Yoshida H; Ohshima T; Shinohara T; Ohguma A; Kazuki Y; Oshimura M; Ishida I; Tomizuka K
    Gene Ther; 2002 Jun; 9(11):708-12. PubMed ID: 12032693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alphoid DNA from different chromosomes forms de novo minichromosomes with high efficiency.
    Kaname T; McGuigan A; Georghiou A; Yurov Y; Osoegawa K; De Jong PJ; Ioannou P; Huxley C
    Chromosome Res; 2005; 13(4):411-22. PubMed ID: 15973505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recombination across the centromere of disjoined and non-disjoined chromosome 21.
    Laurent AM; Li M; Sherman S; Roizès G; Buard J
    Hum Mol Genet; 2003 Sep; 12(17):2229-39. PubMed ID: 12915463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human artificial chromosomes: potential applications and clinical considerations.
    Basu J; Willard HF
    Pediatr Clin North Am; 2006 Oct; 53(5):843-53, viii. PubMed ID: 17027613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.
    Rudd MK; Mays RW; Schwartz S; Willard HF
    Mol Cell Biol; 2003 Nov; 23(21):7689-97. PubMed ID: 14560014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficiency of de novo centromere formation in human artificial chromosomes.
    Mejía JE; Alazami A; Willmott A; Marschall P; Levy E; Earnshaw WC; Larin Z
    Genomics; 2002 Mar; 79(3):297-304. PubMed ID: 11863359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial and engineered chromosomes: non-integrating vectors for gene therapy.
    Basu J; Willard HF
    Trends Mol Med; 2005 May; 11(5):251-8. PubMed ID: 15882613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome.
    Burrack LS; Hutton HF; Matter KJ; Clancey SA; Liachko I; Plemmons AE; Saha A; Power EA; Turman B; Thevandavakkam MA; Ay F; Dunham MJ; Berman J
    PLoS Genet; 2016 Sep; 12(9):e1006317. PubMed ID: 27662467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequencing of a rice centromere uncovers active genes.
    Nagaki K; Cheng Z; Ouyang S; Talbert PB; Kim M; Jones KM; Henikoff S; Buell CR; Jiang J
    Nat Genet; 2004 Feb; 36(2):138-45. PubMed ID: 14716315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of human artificial chromosome vectors by recombineering.
    Kotzamanis G; Cheung W; Abdulrazzak H; Perez-Luz S; Howe S; Cooke H; Huxley C
    Gene; 2005 May; 351():29-38. PubMed ID: 15837432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of an analphoid supernumerary marker chromosome derived from 15q25-->qter using high-resolution CGH and multiplex FISH analyses.
    Huang XL; de Michelena MI; Mark H; Harston R; Benke PJ; Price SJ; Milunsky A
    Clin Genet; 2005 Dec; 68(6):513-9. PubMed ID: 16283881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA.
    Ohzeki J; Nakano M; Okada T; Masumoto H
    J Cell Biol; 2002 Dec; 159(5):765-75. PubMed ID: 12460987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Centromeric alpha-satellite DNA break in reciprocal translocations.
    Wang JC; Hajianpour A; Habibian R
    Cytogenet Genome Res; 2009; 125(4):329-33. PubMed ID: 19864896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability of origin for the neocentromeric sequences in analphoid supernumerary marker chromosomes of well-differentiated liposarcomas.
    Italiano A; Maire G; Sirvent N; Nuin PA; Keslair F; Foa C; Louis C; Aurias A; Pedeutour F
    Cancer Lett; 2009 Jan; 273(2):323-30. PubMed ID: 18823700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.