These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 12032859)
1. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Sunesen M; Stevnsner T; Brosh RM; Dianov GL; Bohr VA Oncogene; 2002 May; 21(22):3571-8. PubMed ID: 12032859 [TBL] [Abstract][Full Text] [Related]
2. The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Brosh RM; Balajee AS; Selzer RR; Sunesen M; Proietti De Santis L; Bohr VA Mol Biol Cell; 1999 Nov; 10(11):3583-94. PubMed ID: 10564257 [TBL] [Abstract][Full Text] [Related]
3. Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis. Balajee AS; Proietti De Santis L; Brosh RM; Selzer R; Bohr VA Oncogene; 2000 Jan; 19(4):477-89. PubMed ID: 10698517 [TBL] [Abstract][Full Text] [Related]
4. Transcription activities at 8-oxoG lesions in DNA. Larsen E; Kwon K; Coin F; Egly JM; Klungland A DNA Repair (Amst); 2004 Nov; 3(11):1457-68. PubMed ID: 15380101 [TBL] [Abstract][Full Text] [Related]
5. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Osterod M; Larsen E; Le Page F; Hengstler JG; Van Der Horst GT; Boiteux S; Klungland A; Epe B Oncogene; 2002 Nov; 21(54):8232-9. PubMed ID: 12447686 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Stevnsner T; Nyaga S; de Souza-Pinto NC; van der Horst GT; Gorgels TG; Hogue BA; Thorslund T; Bohr VA Oncogene; 2002 Dec; 21(57):8675-82. PubMed ID: 12483520 [TBL] [Abstract][Full Text] [Related]
7. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Selzer RR; Nyaga S; Tuo J; May A; Muftuoglu M; Christiansen M; Citterio E; Brosh RM; Bohr VA Nucleic Acids Res; 2002 Feb; 30(3):782-93. PubMed ID: 11809892 [TBL] [Abstract][Full Text] [Related]
8. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. van Gool AJ; Citterio E; Rademakers S; van Os R; Vermeulen W; Constantinou A; Egly JM; Bootsma D; Hoeijmakers JH EMBO J; 1997 Oct; 16(19):5955-65. PubMed ID: 9312053 [TBL] [Abstract][Full Text] [Related]
9. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410 [TBL] [Abstract][Full Text] [Related]
10. The relationship between benzo[a]pyrene-induced mutagenesis and carcinogenesis in repair-deficient Cockayne syndrome group B mice. Wijnhoven SW; Kool HJ; van Oostrom CT; Beems RB; Mullenders LH; van Zeeland AA; van der Horst GT; Vrieling H; van Steeg H Cancer Res; 2000 Oct; 60(20):5681-7. PubMed ID: 11059760 [TBL] [Abstract][Full Text] [Related]
11. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Bucheli M; Sweder K Mol Microbiol; 2004 Jun; 52(6):1653-63. PubMed ID: 15186415 [TBL] [Abstract][Full Text] [Related]
12. Transcription through 8-oxoguanine in DNA repair-proficient and Csb(-)/Ogg1(-) DNA repair-deficient mouse embryonic fibroblasts is dependent upon promoter strength and sequence context. Pastoriza-Gallego M; Armier J; Sarasin A Mutagenesis; 2007 Sep; 22(5):343-51. PubMed ID: 17630408 [TBL] [Abstract][Full Text] [Related]
13. Bacterial DNA repair genes and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair (NER) system in mammalian cells. Maddukuri L; Dudzińska D; Tudek B Acta Biochim Pol; 2007; 54(3):469-82. PubMed ID: 17893751 [TBL] [Abstract][Full Text] [Related]
14. The transcriptional response after oxidative stress is defective in Cockayne syndrome group B cells. Kyng KJ; May A; Brosh RM; Cheng WH; Chen C; Becker KG; Bohr VA Oncogene; 2003 Feb; 22(8):1135-49. PubMed ID: 12606941 [TBL] [Abstract][Full Text] [Related]
15. Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts. de Waard H; Sonneveld E; de Wit J; Esveldt-van Lange R; Hoeijmakers JH; Vrieling H; van der Horst GT DNA Repair (Amst); 2008 Oct; 7(10):1659-69. PubMed ID: 18634906 [TBL] [Abstract][Full Text] [Related]
16. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice. Trapp C; McCullough AK; Epe B Mutat Res; 2007 Dec; 625(1-2):155-63. PubMed ID: 17675188 [TBL] [Abstract][Full Text] [Related]
17. The Cockayne syndrome group B protein is a functional dimer. Christiansen M; Thorslund T; Jochimsen B; Bohr VA; Stevnsner T FEBS J; 2005 Sep; 272(17):4306-14. PubMed ID: 16128801 [TBL] [Abstract][Full Text] [Related]
18. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice. Trapp C; Reite K; Klungland A; Epe B Oncogene; 2007 Jun; 26(27):4044-8. PubMed ID: 17213818 [TBL] [Abstract][Full Text] [Related]
19. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Anindya R; Mari PO; Kristensen U; Kool H; Giglia-Mari G; Mullenders LH; Fousteri M; Vermeulen W; Egly JM; Svejstrup JQ Mol Cell; 2010 Jun; 38(5):637-48. PubMed ID: 20541997 [TBL] [Abstract][Full Text] [Related]