These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1203296)

  • 1. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. III. Integrodifferential equations].
    Pastushenko VF; Chizmadzhev IuA; Markin VS
    Biofizika; 1975; 20(6):1078-82. PubMed ID: 1203296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. II. Slow relaxation of the sodium current].
    Pastushenko VF; Chizmadzhev IuA; Markin VS
    Biofizika; 1975; 20(5):880-6. PubMed ID: 1203276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. I. Rapid relaxation of the sodium current].
    Pastushenko VF; Chizmadzhev IvA ; Markin VS
    Biofizika; 1975; 20(4):675-81. PubMed ID: 1201303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized cable equation model for myelinated nerve fiber.
    Einziger PD; Livshitz LM; Mizrahi J
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1632-42. PubMed ID: 16235649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relationship between ionic membrane currents and stationary rates of stable and unstable spike propagation].
    Khramov RN; Krinskiĭ VI
    Biofizika; 1977; 22(3):512-7. PubMed ID: 889913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Instability and propagation of waves of excitation in a model of a catalytic reaction. III. Non-trivial regimes of propagation of excitation].
    Zaĭkin AN; Kokoz IuM
    Biofizika; 1977; 22(1):113-6. PubMed ID: 849489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [One of the possible regimes of bursting activity in the Hodgkin-Huxley model].
    Chertkov IuS
    Biofizika; 1986; 31(3):498-502. PubMed ID: 3719021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The geometry of the Hodgkin-Huxley Model.
    Plant RE
    Comput Programs Biomed; 1976 Jul; 6(2):85-91. PubMed ID: 954417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A note on the asymptotic reduction of the Hodgkin-Huxley equations for nerve impulses.
    Hinch R
    Bull Math Biol; 2005 Sep; 67(5):947-55. PubMed ID: 15998489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural rate equations for bursting dynamics derived from conductance-based equations.
    Robinson PA; Wu H; Kim JW
    J Theor Biol; 2008 Feb; 250(4):663-72. PubMed ID: 18068732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The singularly perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity.
    Awiszus F; Dehnhardt J; Funke T
    J Math Biol; 1990; 28(2):177-95. PubMed ID: 2319211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on propagation form of nerve impulse waves].
    Chai Y; Zhang J; Yang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1184-8. PubMed ID: 19024472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of static magnetic field on action potential propagation and excitation recovery in nerve.
    Hinch R; Lindsay KA; Noble D; Rosenberg JR
    Prog Biophys Mol Biol; 2005; 87(2-3):321-8. PubMed ID: 15556668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A model for evoked activity of hippocampal neuronal population].
    Chizhov AV
    Biofizika; 2002; 47(6):1086-94. PubMed ID: 12500573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling.
    Ly C; Tranchina D
    Neural Comput; 2007 Aug; 19(8):2032-92. PubMed ID: 17571938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of firing times for the stochastic Fitzhugh-Nagumo neuronal model.
    Tuckwell HC; Rodriguez R; Wan FY
    Neural Comput; 2003 Jan; 15(1):143-59. PubMed ID: 12590823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boundedness and stability for integrodifferential equations modeling neural field with time delay.
    Lou X; Cui B
    Neural Comput; 2007 Feb; 19(2):570-81. PubMed ID: 17206875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two-state cross-bridge model of muscle is an asymptotic limit of multi-state models.
    Zahalak GI
    J Theor Biol; 2000 May; 204(1):67-82. PubMed ID: 10772849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic approximation of spatiotemporal receptive fields in nonlinear neural field models.
    Wennekers T
    Neural Comput; 2002 Aug; 14(8):1801-25. PubMed ID: 12180403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bursting characteristics of a neuron model based on a concept of potential with active areas.
    Nakajima K; Suenaga S
    Chaos; 2008 Jun; 18(2):023120. PubMed ID: 18601487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.