BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 12033436)

  • 1. Role of endogenous oxidative DNA damage in carcinogenesis: what can we learn from repair-deficient mice?
    Epe B
    Biol Chem; 2002; 383(3-4):467-75. PubMed ID: 12033436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice.
    Trapp C; McCullough AK; Epe B
    Mutat Res; 2007 Dec; 625(1-2):155-63. PubMed ID: 17675188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The peroxisome proliferator WY-14,643 promotes hepatocarcinogenesis caused by endogenously generated oxidative DNA base modifications in repair-deficient Csbm/m/Ogg1-/- mice.
    Trapp C; Schwarz M; Epe B
    Cancer Res; 2007 Jun; 67(11):5156-61. PubMed ID: 17545594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage.
    Osterod M; Larsen E; Le Page F; Hengstler JG; Van Der Horst GT; Boiteux S; Klungland A; Epe B
    Oncogene; 2002 Nov; 21(54):8232-9. PubMed ID: 12447686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice.
    Trapp C; Reite K; Klungland A; Epe B
    Oncogene; 2007 Jun; 26(27):4044-8. PubMed ID: 17213818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different DNA repair strategies to combat the threat from 8-oxoguanine.
    Russo MT; De Luca G; Degan P; Bignami M
    Mutat Res; 2007 Jan; 614(1-2):69-76. PubMed ID: 16769088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional cooperation of Ogg1 and Mutyh in preventing G: C-->T: a transversions in mice.
    Isogawa A
    Fukuoka Igaku Zasshi; 2004 Jan; 95(1):17-30. PubMed ID: 15031996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of oxidative DNA damage repair and relevance to human pathology.
    D'Errico M; Parlanti E; Dogliotti E
    Mutat Res; 2008; 659(1-2):4-14. PubMed ID: 18083609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis.
    Russo MT; De Luca G; Casorelli I; Degan P; Molatore S; Barone F; Mazzei F; Pannellini T; Musiani P; Bignami M
    Cancer Res; 2009 May; 69(10):4372-9. PubMed ID: 19435918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interindividual variability in response to sodium dichromate-induced oxidative DNA damage: role of the Ser326Cys polymorphism in the DNA-repair protein of 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA glycosylase 1.
    Lee AJ; Hodges NJ; Chipman JK
    Cancer Epidemiol Biomarkers Prev; 2005 Feb; 14(2):497-505. PubMed ID: 15734978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway.
    Dzierzbicki P; Koprowski P; Fikus MU; Malc E; Ciesla Z
    DNA Repair (Amst); 2004 Apr; 3(4):403-11. PubMed ID: 15010316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allelic loss of the DNA repair gene OGG1 against oxidative damage in esophageal squamous cell carcinoma.
    Hagiwara A; Kitajima Y; Sato S; Miyazaki K
    Oncol Rep; 2005 Jun; 13(6):1009-16. PubMed ID: 15870915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative DNA damage and defence gene expression in the mouse lung after short-term exposure to diesel exhaust particles by inhalation.
    Risom L; Dybdahl M; Bornholdt J; Vogel U; Wallin H; Møller P; Loft S
    Carcinogenesis; 2003 Nov; 24(11):1847-52. PubMed ID: 12919962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct visualization of repair of oxidative damage by OGG1 in the nuclei of live cells.
    Zielinska A; Davies OT; Meldrum RA; Hodges NJ
    J Biochem Mol Toxicol; 2011; 25(1):1-7. PubMed ID: 21322094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease.
    Gao D; Wei C; Chen L; Huang J; Yang S; Diehl AM
    Am J Physiol Gastrointest Liver Physiol; 2004 Nov; 287(5):G1070-7. PubMed ID: 15231485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of Mammalian cells.
    Hoffmann S; Spitkovsky D; Radicella JP; Epe B; Wiesner RJ
    Free Radic Biol Med; 2004 Mar; 36(6):765-73. PubMed ID: 14990355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the repair of oxidative DNA base modifications inducible by a preceding DNA damage induction?
    Bercht M; Flohr-Beckhaus C; Osterod M; Rünger TM; Radicella JP; Epe B
    DNA Repair (Amst); 2007 Mar; 6(3):367-73. PubMed ID: 17197252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents.
    Achanta G; Huang P
    Cancer Res; 2004 Sep; 64(17):6233-9. PubMed ID: 15342409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair and mutagenesis at oxidized DNA lesions in the developing brain of wild-type and Ogg1-/- mice.
    Larsen E; Reite K; Nesse G; Gran C; Seeberg E; Klungland A
    Oncogene; 2006 Apr; 25(17):2425-32. PubMed ID: 16369492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.