These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 12033452)
1. Human neutrophils oxidize low-density lipoprotein by a hypochlorous acid-dependent mechanism: the role of vitamin C. Carr AC; Frei B Biol Chem; 2002; 383(3-4):627-36. PubMed ID: 12033452 [TBL] [Abstract][Full Text] [Related]
2. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins. Hazell LJ; Davies MJ; Stocker R Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584 [TBL] [Abstract][Full Text] [Related]
3. Vitamin C protects against and reverses specific hypochlorous acid- and chloramine-dependent modifications of low-density lipoprotein. Carr AC; Tijerina T; Frei B Biochem J; 2000 Mar; 346 Pt 2(Pt 2):491-9. PubMed ID: 10677371 [TBL] [Abstract][Full Text] [Related]
4. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells. Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243 [TBL] [Abstract][Full Text] [Related]
5. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling. Pattison DI; Hawkins CL; Davies MJ Chem Res Toxicol; 2003 Apr; 16(4):439-49. PubMed ID: 12703960 [TBL] [Abstract][Full Text] [Related]
6. Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase. Peskin AV; Winterbourn CC Free Radic Biol Med; 2006 Jan; 40(1):45-53. PubMed ID: 16337878 [TBL] [Abstract][Full Text] [Related]
7. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. Hazell LJ; Arnold L; Flowers D; Waeg G; Malle E; Stocker R J Clin Invest; 1996 Mar; 97(6):1535-44. PubMed ID: 8617887 [TBL] [Abstract][Full Text] [Related]
8. Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin. Sakata N; Moh A; Takebayashi S Heart Vessels; 2002 Nov; 17(1):22-9. PubMed ID: 12434198 [TBL] [Abstract][Full Text] [Related]
9. Role of hypochlorous acid and chloramines in the extracellular cytolysis by neutrophil polymorphonuclear leukocytes. Dallegri F; Ballestrero A; Frumento G; Patrone F J Clin Lab Immunol; 1986 May; 20(1):37-41. PubMed ID: 3016275 [TBL] [Abstract][Full Text] [Related]
10. Hypochlorous acid-modified low-density lipoprotein inactivates the lysosomal protease cathepsin B: protection by ascorbic and lipoic acids. Carr AC Redox Rep; 2001; 6(6):343-9. PubMed ID: 11865974 [TBL] [Abstract][Full Text] [Related]
11. Neutrophil-induced depletion of adenosine triphosphate in target cells: evidence for a hypochlorous acid-mediated process. Dallegri F; Goretti R; Ballestrero A; Ottonello L; Patrone F J Lab Clin Med; 1988 Dec; 112(6):765-72. PubMed ID: 2848084 [TBL] [Abstract][Full Text] [Related]
12. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines. Summers FA; Morgan PE; Davies MJ; Hawkins CL Chem Res Toxicol; 2008 Sep; 21(9):1832-40. PubMed ID: 18698849 [TBL] [Abstract][Full Text] [Related]
13. Vitamin C attenuates hypochlorite-mediated loss of paraoxonase-1 activity from human plasma. Kunes JP; Cordero-Koning KS; Lee LH; Lynch SM Nutr Res; 2009 Feb; 29(2):114-22. PubMed ID: 19285602 [TBL] [Abstract][Full Text] [Related]
14. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines. Summers FA; Forsman Quigley A; Hawkins CL Biochem Biophys Res Commun; 2012 Aug; 425(2):157-61. PubMed ID: 22819842 [TBL] [Abstract][Full Text] [Related]
15. Immunological evidence for hypochlorite-modified proteins in human kidney. Malle E; Woenckhaus C; Waeg G; Esterbauer H; Gröne EF; Gröne HJ Am J Pathol; 1997 Feb; 150(2):603-15. PubMed ID: 9033274 [TBL] [Abstract][Full Text] [Related]
16. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure? Pattison DI; Hawkins CL; Davies MJ Biochemistry; 2007 Aug; 46(34):9853-64. PubMed ID: 17676767 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function. Hawkins CL; Davies MJ Chem Res Toxicol; 2005 Oct; 18(10):1600-10. PubMed ID: 16533025 [TBL] [Abstract][Full Text] [Related]
18. Comparison of low-density lipoprotein modification by myeloperoxidase-derived hypochlorous and hypobromous acids. Carr AC; Decker EA; Park Y; Frei B Free Radic Biol Med; 2001 Jul; 31(1):62-72. PubMed ID: 11425491 [TBL] [Abstract][Full Text] [Related]
19. Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Panasenko OM; Briviba K; Klotz LO; Sies H Arch Biochem Biophys; 1997 Jul; 343(2):254-9. PubMed ID: 9224738 [TBL] [Abstract][Full Text] [Related]
20. Effects of oxidation on the structure and stability of human low-density lipoprotein. Jayaraman S; Gantz DL; Gursky O Biochemistry; 2007 May; 46(19):5790-7. PubMed ID: 17444660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]