These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12033608)

  • 1. In situ analysis of the organic framework in the prismatic layer of mollusc shell.
    Tong H; Hu J; Ma W; Zhong G; Yao S; Cao N
    Biomaterials; 2002 Jun; 23(12):2593-8. PubMed ID: 12033608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial formation of calcite crystals in the thin prismatic layer with the periostracum of Pinctada fucata.
    Suzuki M; Nakayama S; Nagasawa H; Kogure T
    Micron; 2013 Feb; 45():136-9. PubMed ID: 23176816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meretrix lusoria--a natural biocomposite material: in situ analysis of hierarchical fabrication and micro-hardness.
    Zhu Z; Tong H; Ren Y; Hu J
    Micron; 2006; 37(1):35-40. PubMed ID: 16169741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on shell formation. IX. An electron microscope study of crystal layer formation in the oyster.
    WATABE N; WILBUR KM
    J Biophys Biochem Cytol; 1961 Apr; 9(4):761-71. PubMed ID: 13783329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (Mollusca, Bivalvia, Pteriomorpha).
    Dauphin Y
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Jul; 132(3):577-90. PubMed ID: 12044767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scanning electron microscopic study of the inorganic and organic matrices comprising the mature shell of Amblema, a fresh-water mollusc.
    Petit H; Davis WL; Jones RG
    Tissue Cell; 1980; 12(3):581-93. PubMed ID: 7434339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation and growth of the prismatic layer of Pinctada radiata.
    Nakahara H; Bevelander G
    Calcif Tissue Res; 1971; 7(1):31-45. PubMed ID: 5577841
    [No Abstract]   [Full Text] [Related]  

  • 8. Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata.
    Saruwatari K; Matsui T; Mukai H; Nagasawa H; Kogure T
    Biomaterials; 2009 Jun; 30(16):3028-34. PubMed ID: 19328543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques.
    Suzuki M; Kameda J; Sasaki T; Saruwatari K; Nagasawa H; Kogure T
    J Struct Biol; 2010 Aug; 171(2):223-30. PubMed ID: 20430100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept.
    Dauphin Y; Cuif JP; Doucet J; Salomé M; Susini J; Willams CT
    J Struct Biol; 2003 May; 142(2):272-80. PubMed ID: 12713955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata.
    Okumura T; Suzuki M; Nagasawa H; Kogure T
    Micron; 2010 Oct; 41(7):821-6. PubMed ID: 20558074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.
    Nudelman F
    Semin Cell Dev Biol; 2015 Oct; 46():2-10. PubMed ID: 26205040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homoepitaxial meso- and microscale crystal co-orientation and organic matrix network structure in Mytilus edulis nacre and calcite.
    Griesshaber E; Schmahl WW; Ubhi HS; Huber J; Nindiyasari F; Maier B; Ziegler A
    Acta Biomater; 2013 Dec; 9(12):9492-502. PubMed ID: 23896564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on shell formation. VIII. Electron microscopy of crystal growth of the nacreous layer of the oyster Crassostrea virginica.
    WATABE N; SHARP DG; WILBUR KM
    J Biophys Biochem Cytol; 1958 May; 4(3):281-6. PubMed ID: 13549499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DECALCIFICATION OF THIN SECTIONS FOR ELECTRON MICROSCOPE STUDIES OF CRYSTAL-MATRIX RELATIONSHIPS IN MOLLUSC SHELLS.
    WATABE N
    J Cell Biol; 1963 Sep; 18(3):701-3. PubMed ID: 14064119
    [No Abstract]   [Full Text] [Related]  

  • 16. The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves.
    Checa AG; Rodríguez-Navarro AB; Esteban-Delgado FJ
    Biomaterials; 2005 Nov; 26(32):6404-14. PubMed ID: 15913764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipids from the nacreous and prismatic layers of two Pteriomorpha mollusc shells.
    Farre B; Dauphin Y
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Feb; 152(2):103-9. PubMed ID: 18955152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of aragonitic molluscan shell proteins.
    Furuhashi T; Miksik I; Smrz M; Germann B; Nebija D; Lachmann B; Noe C
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Feb; 155(2):195-200. PubMed ID: 19932190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca).
    Checa AG; Rodríguez-Navarro A
    Proc Biol Sci; 2001 Apr; 268(1468):771-8. PubMed ID: 11321067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomineralization: functions of calmodulin-like protein in the shell formation of pearl oyster.
    Yan Z; Fang Z; Ma Z; Deng J; Li S; Xie L; Zhang R
    Biochim Biophys Acta; 2007 Sep; 1770(9):1338-44. PubMed ID: 17692465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.