These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1203427)

  • 1. Comparison of logistic equations for population growth.
    Jensen AL
    Biometrics; 1975 Dec; 31(4):853-62. PubMed ID: 1203427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-dependence as a size-independent regulatory mechanism.
    de Vladar HP
    J Theor Biol; 2006 Jan; 238(2):245-56. PubMed ID: 15990117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative formulation for a delayed logistic equation.
    Arino J; Wang L; Wolkowicz GS
    J Theor Biol; 2006 Jul; 241(1):109-19. PubMed ID: 16376946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A mathematical model for the dynamics of primitive biological macromolecules and its evolutionary implications].
    Zhang S
    Yi Chuan Xue Bao; 1993; 20(2):185-91. PubMed ID: 8329216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the regulation of populations of mammals, birds, fish, and insects.
    Sibly RM; Barker D; Denham MC; Hone J; Pagel M
    Science; 2005 Jul; 309(5734):607-10. PubMed ID: 16040705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Logistic law of growth and its implications].
    Peil J
    Gegenbaurs Morphol Jahrb; 1978; 124(4):524-45. PubMed ID: 744459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalizing growth functions assuming parameter heterogeneity.
    Piantadosi S
    Growth; 1987; 51(1):50-63. PubMed ID: 3623193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG; Amézquita A; Normand MD; Peleg M
    Int J Food Microbiol; 2006 Feb; 106(2):223-8. PubMed ID: 16226331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of body size and temperature on population growth.
    Savage VM; Gilloly JF; Brown JH; Charnov EL
    Am Nat; 2004 Mar; 163(3):429-41. PubMed ID: 15026978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The notion of the internal and external limitations of monotonic growth functions. A reformulation of the logistic equation].
    Buis R; Lück J
    C R Biol; 2006 Nov; 329(11):880-91. PubMed ID: 17067932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconciling classical and individual-based approaches in theoretical population ecology: a protocol for extracting population parameters from individual-based models.
    Fahse L; Wissel C; Grimm V
    Am Nat; 1998 Dec; 152(6):838-52. PubMed ID: 18811431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model with a modified logistic approach for singly peaked population processes.
    Huzimura R; Matsuyama T
    Theor Popul Biol; 1999 Dec; 56(3):301-6. PubMed ID: 10607523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary predictions should be based on individual-level traits.
    Rueffler C; Egas M; Metz JA
    Am Nat; 2006 Nov; 168(5):E148-62. PubMed ID: 17080357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation and computation of the growth rate in Leslie's and Lotka's population models.
    Anderson DH
    Biometrics; 1975 Sep; 31(3):701-18. PubMed ID: 1174624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical analysis of human embryonic and fetal growth data.
    Wosilait WD; Luecke RH; Young JF
    Growth Dev Aging; 1992; 56(4):249-57. PubMed ID: 1487363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic two-phase growth model.
    Zheng Q
    Bull Math Biol; 1998 Jan; 60(1):151-61. PubMed ID: 9574969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of population growth models: fast migration and slow growth.
    Auger P; Poggiale JC
    J Theor Biol; 1996 Sep; 182(2):99-108. PubMed ID: 8944142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A review of mathematical descriptors of corneal asphericity].
    Gatinel D; Haouat M; Hoang-Xuan T
    J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Itô versus Stratonovich calculus in random population growth.
    Braumann CA
    Math Biosci; 2007 Mar; 206(1):81-107. PubMed ID: 16214183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics.
    Kargi F
    Lett Appl Microbiol; 2009 Apr; 48(4):398-401. PubMed ID: 19187510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.