These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1203460)

  • 21. [The influence of heterotrophic carbon dioxide fixation on enzyme activity in Candida yeasts during growth on n-alkanes and glucose].
    Veselov IIa; Gololobov AD; Davidow ER; Eliseeva LG; Latysheva NN
    Prikl Biokhim Mikrobiol; 1974; 10(5):697-704. PubMed ID: 4463360
    [No Abstract]   [Full Text] [Related]  

  • 22. Assimilation of aliphatic hydrocarbons by Candida tropicalis. II. Fatty acid profiles from cells grown on substrates of different chain length.
    Hug H; Fiechter A
    Arch Mikrobiol; 1973; 88(2):87-96. PubMed ID: 4684077
    [No Abstract]   [Full Text] [Related]  

  • 23. Influence of the conditions of growth on the chemical composition and activity of the enzymes of the cell envelope of the yeast Candida tropicalis IBFM-303.
    Rylkin SS; Berezov TT; Oikhte BA; Shul'ga AV; Gurina LV; Belova LA; Orlova VS; Grishchenko VM; Chigaleichik AG; Boev AV
    Biol Bull Acad Sci USSR; 1978; 5(5):589-601. PubMed ID: 754810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Assimilation of n-alkanes with a varying length of the carbon chain by the yeast Candida guilliermondii].
    Demanova NF; Davidov ER; Gololobov AD
    Prikl Biokhim Mikrobiol; 1980; 16(2):149-55. PubMed ID: 7384005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General scheme for the metabolisation of hydrocarbons by Candida tropicalis.
    Lebeault JM; Roche B; Duvnjak Z; Azoulay E
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:F33-4. PubMed ID: 4319451
    [No Abstract]   [Full Text] [Related]  

  • 26. [Primary distribution of n-alkane through the structures of yeast cells].
    Davidova EG; Demanova NF; Rachinskiĭ VV; Gololobov AD; Davidov ER
    Mikrobiologiia; 1975; 44(5):888-92. PubMed ID: 1207506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Free amino acids of Candida tropicalis K-41 grown on mixture of alkenes and alkanes].
    Osadcha AI; Masumyan VIa; Kubers'ka SL
    Mikrobiol Zh; 1975; 37(5):569-72. PubMed ID: 1219319
    [No Abstract]   [Full Text] [Related]  

  • 28. [Study of respiratory chain of mitochondria of yeasts Candida lipolytica cultivated on hexadecane].
    Volland C; Chaix P
    Bull Soc Chim Biol (Paris); 1970 Jun; 52(5):581-4. PubMed ID: 4316983
    [No Abstract]   [Full Text] [Related]  

  • 29. Fatty acid beta-oxidation system in microbodies of n-alkane-grown Candida tropicalis.
    Kawamoto S; Nozaki C; Tanaka A; Fukui S
    Eur J Biochem; 1978 Feb; 83(2):609-13. PubMed ID: 204485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Nuclear origin of peroxisomes, the probable precursors of mitochondria in hydrocarbon-oxidizing yeasts of the genus Candida].
    Stepaniuk VV
    Tsitologiia; 1981 Apr; 23(4):369-77. PubMed ID: 7256843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixed cultures of different yeasts species and yeasts with filamentous fungi in the SCP production. I. Production of single cell protein by mixed cultures Candida lipolytica and Candida tropicalis.
    Achremowicz B; Kosikowski FV; Masuyama K
    Acta Microbiol Pol; 1977; 26(3):265-71. PubMed ID: 70971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth of Candida albicans on hydrocarbons: influence on lipids and sterols.
    Sorkhoh NA; Ghannoum MA; Ibrahim AS; Stretton RJ; Radwan SS
    Microbios; 1990; 64(260-261):159-71. PubMed ID: 2084494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Long-chain fatty acid activation in Candida tropicalis cultured on hydrocarbons].
    Duvnjak Z; Lebeault JM; Roche B; Azoulay E
    Biochim Biophys Acta; 1970 May; 202(3):447-59. PubMed ID: 5442184
    [No Abstract]   [Full Text] [Related]  

  • 34. A comparative study of cells and mitochondria of Saccharomyces cerevisiae and of a hydrocarbon-utilizing yeast, Candida lipolytica.
    Skipton MD; Watson K; Houghton RL; Griffiths DE
    J Gen Microbiol; 1974 Sep; 84(1):94-110. PubMed ID: 4154966
    [No Abstract]   [Full Text] [Related]  

  • 35. Cellular fatty acids derived from normal alkanes by Candida rugosa.
    Iida M; Kobayashi H; Iizuka H
    Z Allg Mikrobiol; 1980; 20(7):449-57. PubMed ID: 7434793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial conversions of n-alkanes to fatty acids: A new attempt to obtain economical microbial fats and fatty acids.
    Ratledge C
    Chem Ind; 1970 Jun; 26():843-54. PubMed ID: 5431590
    [No Abstract]   [Full Text] [Related]  

  • 37. [Search for yeast producers of brassylic and sebacic fatty acids].
    Ulezlo IV; Rogozhin IS
    Prikl Biokhim Mikrobiol; 2004; 40(5):533-5. PubMed ID: 15553784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Some morphological, physiological and biochemical properties of Candida tropicalis K-41, grown on the medium with N-alkanes].
    Rudenko VI; Kvasnikov EI; Shchelokova IF
    Mikrobiol Zh; 1970; 32(6):715-8. PubMed ID: 5519064
    [No Abstract]   [Full Text] [Related]  

  • 40. [Metabolite excretion by yeasts of the genus Candida in media lacking sources of N, P, S, or Mg and having different carbon sources].
    Mandeva RD; Ermakova IT; Lozinov AB
    Mikrobiologiia; 1981; 50(1):62-8. PubMed ID: 7219222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.