These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12034815)

  • 41. Identification of a 3'-->5' exonuclease activity associated with human RNA polymerase II.
    Wang D; Hawley DK
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):843-7. PubMed ID: 8381534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A DNA minor groove-binding ligand both potentiates and arrests transcription by RNA polymerase II. Elongation factor SII enables readthrough at arrest sites.
    Mote J; Ghanouni P; Reines D
    J Mol Biol; 1994 Feb; 236(3):725-37. PubMed ID: 8114090
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional fidelity and proofreading by RNA polymerase II.
    Thomas MJ; Platas AA; Hawley DK
    Cell; 1998 May; 93(4):627-37. PubMed ID: 9604937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NDF is a transcription factor that stimulates elongation by RNA polymerase II.
    Fei J; Xu J; Li Z; Xu K; Wang D; Kassavetis GA; Kadonaga JT
    Genes Dev; 2022 Mar; 36(5-6):294-299. PubMed ID: 35273076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder.
    Oh J; Jia T; Xu J; Chong J; Dervan PB; Wang D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022237
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TFIIS enhances transcriptional elongation through an artificial arrest site in vivo.
    Kulish D; Struhl K
    Mol Cell Biol; 2001 Jul; 21(13):4162-8. PubMed ID: 11390645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel RNA polymerase I-dependent RNase activity that shortens nascent transcripts from the 3' end.
    Tschochner H
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12914-9. PubMed ID: 8917519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for a mediator cycle at the initiation of transcription.
    Svejstrup JQ; Li Y; Fellows J; Gnatt A; Bjorklund S; Kornberg RD
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6075-8. PubMed ID: 9177171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA polymerase II structure: from core to functional complexes.
    Cramer P
    Curr Opin Genet Dev; 2004 Apr; 14(2):218-26. PubMed ID: 15196470
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors.
    Luse DS; Spangler LC; Újvári A
    J Biol Chem; 2011 Feb; 286(8):6040-8. PubMed ID: 21177855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purified elongation factor SII is sufficient to promote read-through by purified RNA polymerase II at specific termination sites in the human histone H3.3 gene.
    SivaRaman L; Reines D; Kane CM
    J Biol Chem; 1990 Aug; 265(24):14554-60. PubMed ID: 2387869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates.
    Izban MG; Luse DS
    J Biol Chem; 1992 Jul; 267(19):13647-55. PubMed ID: 1618865
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nature of the nucleosomal barrier to RNA polymerase II.
    Kireeva ML; Hancock B; Cremona GH; Walter W; Studitsky VM; Kashlev M
    Mol Cell; 2005 Apr; 18(1):97-108. PubMed ID: 15808512
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure-function studies of the RNA polymerase II elongation complex.
    Brueckner F; Armache KJ; Cheung A; Damsma GE; Kettenberger H; Lehmann E; Sydow J; Cramer P
    Acta Crystallogr D Biol Crystallogr; 2009 Feb; 65(Pt 2):112-20. PubMed ID: 19171965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Members of the SAGA and Mediator complexes are partners of the transcription elongation factor TFIIS.
    Wery M; Shematorova E; Van Driessche B; Vandenhaute J; Thuriaux P; Van Mullem V
    EMBO J; 2004 Oct; 23(21):4232-42. PubMed ID: 15359273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes.
    Saeki H; Svejstrup JQ
    Mol Cell; 2009 Jul; 35(2):191-205. PubMed ID: 19647516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular dynamics simulation study of conformational changes of transcription factor TFIIS during RNA polymerase II transcriptional arrest and reactivation.
    Eun C; Ortiz-Sánchez JM; Da L; Wang D; McCammon JA
    PLoS One; 2014; 9(5):e97975. PubMed ID: 24842057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcription elongation factor SII interacts with a domain of the large subunit of human RNA polymerase II.
    Rappaport J; Cho K; Saltzman A; Prenger J; Golomb M; Weinmann R
    Mol Cell Biol; 1988 Aug; 8(8):3136-42. PubMed ID: 3145407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II.
    Archambault J; Lacroute F; Ruet A; Friesen JD
    Mol Cell Biol; 1992 Sep; 12(9):4142-52. PubMed ID: 1508210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes.
    Weilbaecher RG; Awrey DE; Edwards AM; Kane CM
    J Biol Chem; 2003 Jun; 278(26):24189-99. PubMed ID: 12692127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.