These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 12035808)

  • 21. Studies in the search for life on Mars.
    Koike J; Oshima T; Kobayashi K; Kawasaki Y
    Adv Space Res; 1995 Mar; 15(3):211-4. PubMed ID: 11539227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight.
    Nicholson WL; Schuerger AC; Setlow P
    Mutat Res; 2005 Apr; 571(1-2):249-64. PubMed ID: 15748651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.
    Rettberg P; Rabbow E; Panitz C; Horneck G
    Adv Space Res; 2004; 33(8):1294-301. PubMed ID: 15803617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.
    Wassmann M; Moeller R; Rabbow E; Panitz C; Horneck G; Reitz G; Douki T; Cadet J; Stan-Lotter H; Cockell CS; Rettberg P
    Astrobiology; 2012 May; 12(5):498-507. PubMed ID: 22680695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The possibility of life in outer space.
    Imshenetsky AA; Abyzov SS; Voronov GT; Zhukova AI; Lysenko SV
    Life Sci Space Res; 1966; 4():121-30. PubMed ID: 11915884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. "Gulliver", an experiment for extraterrestrial life detection and analysis.
    Levin GV; Heim AH; Thompson MF; Beem DR; Horowitz NH
    Life Sci Space Res; 1964; 2():124-32. PubMed ID: 11881643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Procedures necessary for the prevention of planetary contamination.
    Hall LB; Bruch CW
    Life Sci Space Res; 1965; 3():48-62. PubMed ID: 12035807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discussion of a possible contamination of space with terrestrial life.
    Bucker H; Horneck G
    Life Sci Space Res; 1969; 7():21-7. PubMed ID: 12197541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preservation of Biomarkers from Cyanobacteria Mixed with Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux.
    Baqué M; Verseux C; Böttger U; Rabbow E; de Vera JP; Billi D
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):289-310. PubMed ID: 26530341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cryptobiosphere of Mars].
    Gal'chenko VF
    Aviakosm Ekolog Med; 2003; 37(5):15-22. PubMed ID: 14730728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.
    Fajardo-Cavazos P; Schuerger AC; Nicholson WL
    Astrobiology; 2010 May; 10(4):403-11. PubMed ID: 20528195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological instrumentation for the Viking 1975 mission to Mars.
    Klein HP; Vishniac W
    Life Sci Space Res; 1972; 10():201-10. PubMed ID: 11898839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation.
    Nicholson WL; Schuerger AC; Douki T
    Astrobiology; 2018 Apr; 18(4):393-402. PubMed ID: 29589975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Survival of bacterial spores under some simulated lunar surface conditions.
    Horneck G; Bucker H; Wollenhaupt H
    Life Sci Space Res; 1971; 9():119-24. PubMed ID: 12206178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation of rpoB mutations causing rifampicin resistance in Bacillus subtilis spores exposed to simulated Martian surface conditions.
    Perkins AE; Schuerger AC; Nicholson WL
    Astrobiology; 2008 Dec; 8(6):1159-67. PubMed ID: 19191541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Survival of microorganisms in a simulated Martian environment. II. Moisture and oxygen requirements for germination of Bacillus cereus and Bacillus subtilis var. niger spores.
    Hagen CA; Hawrylewicz EJ; Ehrlich R
    Appl Microbiol; 1967 Mar; 15(2):285-91. PubMed ID: 4961769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment.
    Fajardo-Cavazos P; Schuerger AC; Nicholson WL
    Appl Environ Microbiol; 2008 Aug; 74(16):5159-67. PubMed ID: 18567687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Survivability of Psychrobacter cryohalolentis K5 under simulated martian surface conditions.
    Smith DJ; Schuerger AC; Davidson MM; Pacala SW; Bakermans C; Onstott TC
    Astrobiology; 2009 Mar; 9(2):221-8. PubMed ID: 19371162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiology of xerophytic micro-organisms growing under Martian conditions.
    Imshenetsky AA; Pisarenko NF; Kuziurina LA; Yakshina VM
    Life Sci Space Res; 1977; 15():47-52. PubMed ID: 12596805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.