BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12035927)

  • 1. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes.
    Angelon KA; Petranka JW
    J Chem Ecol; 2002 Apr; 28(4):797-806. PubMed ID: 12035927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oviposition Behavior of Culex tarsalis (Diptera: Culicidae) Responding to Semiochemicals Associated with the Western Mosquitofish, Gambusia affinis (Cyprinodontiformes: Poecilliidae).
    Why AM; Walton WE
    J Med Entomol; 2020 Feb; 57(2):343-352. PubMed ID: 31742605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Chemicals Associated Gambusia affinis (Cyprinodontiformes: Poeciliidae), and Their Effect on Oviposition Behavior of Culex tarsalis (Diptera: Culicidae) in the Laboratory.
    Why AM; Choe DH; Walton WE
    J Med Entomol; 2021 Nov; 58(6):2075-2090. PubMed ID: 34048562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mosquito oviposition and larvae development in response to kairomones originated by different fish.
    Cohen S; Silberbush A
    Med Vet Entomol; 2021 Mar; 35(1):129-133. PubMed ID: 32557738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical detection of the predator Notonecta irrorata by ovipositing Culex mosquitoes.
    Blaustein L; Blaustein J; Chase J
    J Vector Ecol; 2005 Dec; 30(2):299-301. PubMed ID: 16599167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ovipositional responses of two Culex (Diptera: Culicidae) species to larvivorous fish.
    Walton WE; Van Dam AR; Popko DA
    J Med Entomol; 2009 Nov; 46(6):1338-43. PubMed ID: 19960678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mosquito control provided by the arroyo chub (Gila orcutti) and the mosquitofish (Gambusia affinis).
    Van Dam AR; Walton WE
    J Am Mosq Control Assoc; 2007 Dec; 23(4):430-41. PubMed ID: 18240519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of predatory fish exudates on the ovipostional behaviour of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis.
    Van Dam AR; Walton WE
    Med Vet Entomol; 2008 Dec; 22(4):399-404. PubMed ID: 19120968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish microbiota repel ovipositing mosquitoes.
    Shteindel N; Gerchman Y; Silberbush A
    J Anim Ecol; 2024 May; 93(5):599-605. PubMed ID: 38420662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Efficacy of
    Bickerton MW; Corleto J; Verna TN; Williges E; Matadha D
    J Am Mosq Control Assoc; 2018 Jun; 34(2):99-106. PubMed ID: 31442159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect effect of predators on Anopheles gambiae sensu stricto.
    Chobu M; Nkwengulila G; Mahande AM; Mwang'onde BJ; Kweka EJ
    Acta Trop; 2015 Feb; 142():131-7. PubMed ID: 25438260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fish-Released Kairomones Affect Mosquito Oviposition and Larval Life History.
    Silberbush A
    J Med Entomol; 2022 Jan; 59(1):78-82. PubMed ID: 34430976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of mosquito predation by the fish Pseudomugil signifier Kner and Gambusia holbrooki (Girard) in laboratory trials.
    Willems KJ; Webb CE; Russell RC
    J Vector Ecol; 2005 Jun; 30(1):87-90. PubMed ID: 16007960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of halofenozide against prey mosquito larvae Culex pipiens and the predator fish Gambusia affinis: impact on growth and enzymatic activities.
    Soltani N; Chouahda S; Smagghe G
    Commun Agric Appl Biol Sci; 2008; 73(3):659-66. PubMed ID: 19226809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative efficacy of the threespine stickleback (Gasterosteus aculeatus) and the mosquitofish (Gambusia affinis) for mosquito control.
    Offill YA; Walton WE
    J Am Mosq Control Assoc; 1999 Sep; 15(3):380-90. PubMed ID: 10480131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocontrol efficacy of Gerris (A) spinolae, Laccotrephes griseus and Gambusia affinis on larval mosquitoes.
    Ambrose T; Mani T; Vincent S; Kumar LC; Mathews KT
    Indian J Malariol; 1993 Dec; 30(4):187-92. PubMed ID: 8034107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanotaenia duboulayi influence oviposition site selection by Culex annulirostris (Diptera: Culicidae) and Aedes notoscriptus (Diptera: Culicidae) but not Culex quinquefasciatus (Diptera: Culicidae).
    Hurst TP; Kay BH; Brown MD; Ryan PA
    Environ Entomol; 2010 Apr; 39(2):545-51. PubMed ID: 20388286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae).
    Chandra G; Mandal SK; Ghosh AK; Das D; Banerjee SS; Chakraborty S
    BMC Infect Dis; 2008 Oct; 8():138. PubMed ID: 18922168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of fish as predators of mosquito larvae on the floodplain of the Gambia River.
    Louca V; Lucas MC; Green C; Majambere S; Fillinger U; Lindsay SW
    J Med Entomol; 2009 May; 46(3):546-56. PubMed ID: 19496426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of cladocerans as controphic competitors of the mosquito Culex pipiens.
    Duquesne S; Kroeger I; Kutyniok M; Liess M
    J Med Entomol; 2011 May; 48(3):554-60. PubMed ID: 21661316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.