These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 12037608)
1. Contribution of cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.). Johansen JE; Binnerup SJ Microb Ecol; 2002 Apr; 43(3):298-306. PubMed ID: 12037608 [TBL] [Abstract][Full Text] [Related]
2. Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. Johansen JE; Binnerup SJ; Lejbølle KB; Mascher F; Sørensen J; Keel C J Appl Microbiol; 2002; 93(6):1065-74. PubMed ID: 12452964 [TBL] [Abstract][Full Text] [Related]
3. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. Wasaki J; Rothe A; Kania A; Neumann G; Römheld V; Shinano T; Osaki M; Kandeler E J Environ Qual; 2005; 34(6):2157-66. PubMed ID: 16275716 [TBL] [Abstract][Full Text] [Related]
4. Identification and potential enzyme capacity of flavobacteria isolated from the rhizosphere of barley (Hordeum vulgare L.). Johansen JE; Nielsen P; Binnerup SJ Can J Microbiol; 2009 Mar; 55(3):234-41. PubMed ID: 19370066 [TBL] [Abstract][Full Text] [Related]
5. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Phillips RP; Finzi AC; Bernhardt ES Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050 [TBL] [Abstract][Full Text] [Related]
6. [Effect of phosphorus on the colonization of barley rhizosphere by microorganisms]. Orazova MX; Burkanova OA; Polianskaia LM; Zviagintsev DG Mikrobiologiia; 2000; 69(3):420-5. PubMed ID: 10920815 [TBL] [Abstract][Full Text] [Related]
7. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions. Long XX; Zhang YG; Jun D; Zhou Q Bull Environ Contam Toxicol; 2009 Apr; 82(4):460-7. PubMed ID: 19183820 [TBL] [Abstract][Full Text] [Related]
8. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Unno Y; Okubo K; Wasaki J; Shinano T; Osaki M Environ Microbiol; 2005 Mar; 7(3):396-404. PubMed ID: 15683400 [TBL] [Abstract][Full Text] [Related]
9. Extracellular enzyme activity and dynamics of bacterial community in mucilaginous aggregates of the northern Adriatic Sea. Zoppini A; Puddu A; Fazi S; Rosati M; Sist P Sci Total Environ; 2005 Dec; 353(1-3):270-86. PubMed ID: 16310835 [TBL] [Abstract][Full Text] [Related]
10. Microbial activity related to N cycling in the rhizosphere of maize stressed by heavy metals. Yang Y; Chen YX; Tian GM; Zhang ZJ J Environ Sci (China); 2005; 17(3):448-51. PubMed ID: 16083122 [TBL] [Abstract][Full Text] [Related]
11. Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere. Poll J; Marhan S; Haase S; Hallmann J; Kandeler E; Ruess L FEMS Microbiol Ecol; 2007 Dec; 62(3):268-79. PubMed ID: 17916076 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Zhu YG; Smith FA; Smith SE Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831 [TBL] [Abstract][Full Text] [Related]
13. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils. Kuske CR; Ticknor LO; Busch JD; Gehring CA; Whitham TG Microb Ecol; 2003 May; 45(4):340-52. PubMed ID: 12704562 [TBL] [Abstract][Full Text] [Related]
14. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Gulis V; Suberkropp K Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584 [TBL] [Abstract][Full Text] [Related]
15. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. DeAngelis KM; Lindow SE; Firestone MK FEMS Microbiol Ecol; 2008 Nov; 66(2):197-207. PubMed ID: 18721146 [TBL] [Abstract][Full Text] [Related]
16. Utilization of different carbon sources by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.) inoculated with root-free, rhizosphere and mycorrhizosphere soil. Pokojska-Burdziej A; Rözycki H; Strzelczyk E Acta Microbiol Pol; 2001; 50(1):65-73. PubMed ID: 11518395 [TBL] [Abstract][Full Text] [Related]
17. [Experimental and mathematical modeling of population dynamics of rhizospheric bacteria under conditions of cadmium stress]. Pishchik VN; Vorob'ev NI; Provorov NA Mikrobiologiia; 2005; 74(6):845-51. PubMed ID: 16400997 [TBL] [Abstract][Full Text] [Related]
18. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
19. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Cardinale M; Ratering S; Suarez C; Zapata Montoya AM; Geissler-Plaum R; Schnell S Microbiol Res; 2015 Dec; 181():22-32. PubMed ID: 26640049 [TBL] [Abstract][Full Text] [Related]
20. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]