BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12038637)

  • 1. Material properties of interstitial lamellae reflect local strain environments.
    Goodwin KJ; Sharkey NA
    J Orthop Res; 2002 May; 20(3):600-6. PubMed ID: 12038637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single lamellar mechanics of the human lumbar anulus fibrosus.
    Holzapfel GA; Schulze-Bauer CA; Feigl G; Regitnig P
    Biomech Model Mechanobiol; 2005 Mar; 3(3):125-40. PubMed ID: 15778871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age, gender, and bone lamellae elastic moduli.
    Hoffler CE; Moore KE; Kozloff K; Zysset PK; Goldstein SA
    J Orthop Res; 2000 May; 18(3):432-7. PubMed ID: 10937630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical response of the human clavicle subjected to dynamic bending.
    Kemper A; Stitzel J; Gabler C; Duma S; Matsuoka F
    Biomed Sci Instrum; 2006; 42():231-6. PubMed ID: 16817613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forces loading the tarsal joint in the hind limb of the horse, determined from in vivo strain measurements of the third metatarsal bone.
    Schamhardt HC; Hartman W; Lammertink JL
    Am J Vet Res; 1989 May; 50(5):728-33. PubMed ID: 2729717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of bone strain measurements at anatomically relevant sites using surface gauges versus strain gauged bone staples.
    Milgrom C; Finestone A; Hamel A; Mandes V; Burr D; Sharkey N
    J Biomech; 2004 Jun; 37(6):947-52. PubMed ID: 15111084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic properties of human tibial cortical bone as measured by nanoindentation.
    Fan Z; Swadener JG; Rho JY; Roy ME; Pharr GM
    J Orthop Res; 2002 Jul; 20(4):806-10. PubMed ID: 12168671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biomechanical response of human bone: the influence of bone volume and mineral density.
    Kemper A; Ng T; Duma S
    Biomed Sci Instrum; 2006; 42():284-9. PubMed ID: 16817622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An application of nanoindentation technique to measure bone tissue Lamellae properties.
    Hoffler CE; Guo XE; Zysset PK; Goldstein SA
    J Biomech Eng; 2005 Dec; 127(7):1046-53. PubMed ID: 16502646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate.
    Chia HN; Hull ML
    J Orthop Res; 2008 Jul; 26(7):951-6. PubMed ID: 18271010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mobile-bearing knee prosthesis can reduce strain at the proximal tibia.
    Bottlang M; Erne OK; Lacatusu E; Sommers MB; Kessler O
    Clin Orthop Relat Res; 2006 Jun; 447():105-11. PubMed ID: 16456313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural behaviour and strain distribution of the long bones of the human lower limbs.
    Cristofolini L; Conti G; Juszczyk M; Cremonini S; Van Sint Jan S; Viceconti M
    J Biomech; 2010 Mar; 43(5):826-35. PubMed ID: 20031136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.