These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12038751)

  • 1. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo.
    Sprung R; Sprague R; Spence D
    Anal Chem; 2002 May; 74(10):2274-8. PubMed ID: 12038751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemiluminescence detection of ATP release from red blood cells upon passage through microbore tubing.
    Edwards J; Sprung R; Sprague R; Spence D
    Analyst; 2001 Aug; 126(8):1257-60. PubMed ID: 11534589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo.
    Fischer DJ; Torrence NJ; Sprung RJ; Spence DM
    Analyst; 2003 Sep; 128(9):1163-8. PubMed ID: 14529024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream.
    Carroll JS; Ku CJ; Karunarathne W; Spence DM
    Anal Chem; 2007 Jul; 79(14):5133-8. PubMed ID: 17580956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels.
    Price AK; Fischer DJ; Martin RS; Spence DM
    Anal Chem; 2004 Aug; 76(16):4849-55. PubMed ID: 15307797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension.
    Sprague RS; Stephenson AH; Ellsworth ML; Keller C; Lonigro AJ
    Exp Biol Med (Maywood); 2001 May; 226(5):434-9. PubMed ID: 11393171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production.
    Raththagala M; Karunarathne W; Kryziniak M; McCracken J; Spence DM
    Eur J Pharmacol; 2010 Oct; 645(1-3):32-8. PubMed ID: 20655902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.
    Lockwood SY; Erkal JL; Spence DM
    Nitric Oxide; 2014 Apr; 38():1-7. PubMed ID: 24530476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of ATP-induced nitric oxide in a biomimetic circulatory vessel containing an immobilized endothelium.
    Kotsis DH; Spence DM
    Anal Chem; 2003 Jan; 75(1):145-51. PubMed ID: 12530831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes.
    Faris A; Spence DM
    Analyst; 2008 May; 133(5):678-82. PubMed ID: 18427692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes.
    Subasinghe W; Spence DM
    Anal Chim Acta; 2008 Jun; 618(2):227-33. PubMed ID: 18513544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance.
    Sprague RS; Olearczyk JJ; Spence DM; Stephenson AH; Sprung RW; Lonigro AJ
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H693-700. PubMed ID: 12689860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-induced ATP release from red blood cells requires CFTR activity.
    Sprague RS; Ellsworth ML; Stephenson AH; Kleinhenz ME; Lonigro AJ
    Am J Physiol; 1998 Nov; 275(5):H1726-32. PubMed ID: 9815080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits ATP release from erythrocytes.
    Olearczyk JJ; Ellsworth ML; Stephenson AH; Lonigro AJ; Sprague RS
    J Pharmacol Exp Ther; 2004 Jun; 309(3):1079-84. PubMed ID: 14766946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP: the red blood cell link to NO and local control of the pulmonary circulation.
    Sprague RS; Ellsworth ML; Stephenson AH; Lonigro AJ
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2717-22. PubMed ID: 8997335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids.
    Jiang H; Zhu AG; Mamczur M; Falck JR; Lerea KM; McGiff JC
    Br J Pharmacol; 2007 Aug; 151(7):1033-40. PubMed ID: 17558440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP Release by Red Blood Cells under Flow: Model and Simulations.
    Zhang H; Shen Z; Hogan B; Barakat AI; Misbah C
    Biophys J; 2018 Dec; 115(11):2218-2229. PubMed ID: 30447988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of shear-induced ATP release from red blood cells.
    Wan J; Ristenpart WD; Stone HA
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16432-7. PubMed ID: 18922780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking.
    Wang Y; Giebink A; Spence DM
    Integr Biol (Camb); 2014 Jan; 6(1):65-75. PubMed ID: 24292633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.