These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12038847)

  • 1. Use of a novel beta-tricalcium phosphate-based bone void filler as a graft extender in spinal fusion surgeries.
    Gunzburg R; Szpalski M
    Orthopedics; 2002 May; 25(5 Suppl):s591-5. PubMed ID: 12038847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjunctive use of ultraporous beta-tricalcium phosphate bone void filler in spinal arthrodesis.
    Meadows GR
    Orthopedics; 2002 May; 25(5 Suppl):s579-84. PubMed ID: 12038845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine.
    Pugely AJ; Petersen EB; DeVries-Watson N; Fredericks DC
    Iowa Orthop J; 2017; 37():193-198. PubMed ID: 28852357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion.
    Linovitz RJ; Peppers TA
    Orthopedics; 2002 May; 25(5 Suppl):s585-9. PubMed ID: 12038846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up.
    Dai LY; Jiang LS
    Spine (Phila Pa 1976); 2008 May; 33(12):1299-304. PubMed ID: 18496340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion rate and clinical outcome in anterior lumbar interbody fusion with beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute. A prospective clinical study in fifty patients.
    Lechner R; Putzer D; Liebensteiner M; Bach C; Thaler M
    Int Orthop; 2017 Feb; 41(2):333-339. PubMed ID: 27770186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis.
    Lerner T; Bullmann V; Schulte TL; Schneider M; Liljenqvist U
    Eur Spine J; 2009 Feb; 18(2):170-9. PubMed ID: 19082847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun PLGA and β-TCP (Rebossis-85) in a Lapine Posterolateral Fusion Model.
    Nepola JC; Petersen EB; DeVries-Watson N; Grosland N; Fredericks DC
    Iowa Orthop J; 2019; 39(2):9-19. PubMed ID: 32577102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute in posterior lumbar interbody fusion.
    Thaler M; Lechner R; Gstöttner M; Kobel C; Bach C
    Eur Spine J; 2013 May; 22(5):1173-82. PubMed ID: 23073745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate.
    Boden SD; Martin GJ; Morone MA; Ugbo JL; Moskovitz PA
    Spine (Phila Pa 1976); 1999 Jun; 24(12):1179-85. PubMed ID: 10382242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid grafting using bone marrow aspirate combined with porous β-tricalcium phosphate and trephine bone for lumbar posterolateral spinal fusion: a prospective, comparative study versus local bone grafting.
    Yamada T; Yoshii T; Sotome S; Yuasa M; Kato T; Arai Y; Kawabata S; Tomizawa S; Sakaki K; Hirai T; Shinomiya K; Okawa A
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E174-9. PubMed ID: 21673618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-center, consecutive series study of the use of a novel platelet-rich fibrin matrix (PRFM) and beta-tricalcium phosphate in posterolateral lumbar fusion.
    Callanan TC; Brecevich AT; Steiner CD; Xavier F; Iorio JA; Abjornson C; Cammisa FP
    Eur Spine J; 2019 Apr; 28(4):719-726. PubMed ID: 30511243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion.
    Lee JH; Chang BS; Jeung UO; Park KW; Kim MS; Lee CK
    Clin Orthop Surg; 2011 Sep; 3(3):238-44. PubMed ID: 21909472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prospective comparative study of radiological outcomes after instrumented posterolateral fusion mass using autologous local bone or a mixture of beta-tcp and autologous local bone in the same patient.
    Kong S; Park JH; Roh SW
    Acta Neurochir (Wien); 2013 May; 155(5):765-70. PubMed ID: 23494134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unidirectional porous β-tricalcium phosphate induces bony fusion in lateral lumbar interbody fusion.
    Kumagai H; Abe T; Koda M; Nagashima K; Miura K; Mataki K; Fujii K; Noguchi H; Funayama T; Yamazaki M
    J Clin Neurosci; 2019 Jan; 59():232-235. PubMed ID: 30244976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review.
    Buser Z; Brodke DS; Youssef JA; Meisel HJ; Myhre SL; Hashimoto R; Park JB; Tim Yoon S; Wang JC
    J Neurosurg Spine; 2016 Oct; 25(4):509-516. PubMed ID: 27231812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Prospective, Randomized, Multicenter Study Comparing Silicated Calcium Phosphate versus BMP-2 Synthetic Bone Graft in Posterolateral Instrumented Lumbar Fusion for Degenerative Spinal Disorders.
    Coughlan M; Davies M; Mostert AK; Nanda D; Willems PC; Rosenberg G; Ferch R
    Spine (Phila Pa 1976); 2018 Aug; 43(15):E860-E868. PubMed ID: 29652784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efficacy of a nanosynthetic bone graft substitute as a bone graft extender in rabbit posterolateral fusion.
    Conway JC; Oliver RA; Wang T; Wills DJ; Herbert J; Buckland T; Walsh WR; Gibson IR
    Spine J; 2021 Nov; 21(11):1925-1937. PubMed ID: 34033931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lumbar spinal fusion with β-TCP granules and variable Escherichia coli-derived rhBMP-2 dose.
    Pelletier MH; Oliver RA; Christou C; Yu Y; Bertollo N; Irie H; Walsh WR
    Spine J; 2014 Aug; 14(8):1758-68. PubMed ID: 24486479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone.
    Thalgott JS; Giuffre JM; Fritts K; Timlin M; Klezl Z
    Spine J; 2001; 1(2):131-7. PubMed ID: 14588393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.