These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 12038966)
1. Evidence that there are two copies of subunit c" in V0 complexes in the vacuolar H+-ATPase. Gibson LC; Cadwallader G; Finbow ME Biochem J; 2002 Sep; 366(Pt 3):911-9. PubMed ID: 12038966 [TBL] [Abstract][Full Text] [Related]
2. Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. Inoue T; Forgac M J Biol Chem; 2005 Jul; 280(30):27896-903. PubMed ID: 15951435 [TBL] [Abstract][Full Text] [Related]
3. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. Jefferies KC; Forgac M J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183 [TBL] [Abstract][Full Text] [Related]
4. TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. Wang Y; Inoue T; Forgac M J Biol Chem; 2004 Oct; 279(43):44628-38. PubMed ID: 15322078 [TBL] [Abstract][Full Text] [Related]
5. Cysteine-directed cross-linking to subunit B suggests that subunit E forms part of the peripheral stalk of the vacuolar H+-ATPase. Arata Y; Baleja JD; Forgac M J Biol Chem; 2002 Feb; 277(5):3357-63. PubMed ID: 11724797 [TBL] [Abstract][Full Text] [Related]
6. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of the N-terminal domain of subunit a of the yeast vacuolar ATPase (V-ATPase) using accessibility of single cysteine substitutions to chemical modification. Liberman R; Cotter K; Baleja JD; Forgac M J Biol Chem; 2013 Aug; 288(31):22798-808. PubMed ID: 23740254 [TBL] [Abstract][Full Text] [Related]
8. Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase. Qi J; Forgac M J Biol Chem; 2008 Jul; 283(28):19274-82. PubMed ID: 18492665 [TBL] [Abstract][Full Text] [Related]
9. Assembly of the yeast vacuolar H+-ATPase and ATP hydrolysis occurs in the absence of subunit c''. Whyteside G; Gibson L; Scott M; Finbow ME FEBS Lett; 2005 Jun; 579(14):2981-5. PubMed ID: 15907326 [TBL] [Abstract][Full Text] [Related]
10. Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Arata Y; Baleja JD; Forgac M Biochemistry; 2002 Sep; 41(37):11301-7. PubMed ID: 12220197 [TBL] [Abstract][Full Text] [Related]
11. Analysis of strains with mutations in six genes encoding subunits of the V-ATPase: eukaryotes differ in the composition of the V0 sector of the enzyme. Chavez C; Bowman EJ; Reidling JC; Haw KH; Bowman BJ J Biol Chem; 2006 Sep; 281(37):27052-62. PubMed ID: 16857684 [TBL] [Abstract][Full Text] [Related]
12. Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. Shao E; Forgac M J Biol Chem; 2004 Nov; 279(47):48663-70. PubMed ID: 15355963 [TBL] [Abstract][Full Text] [Related]
13. Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase. Flannery AR; Stevens TH J Biol Chem; 2008 Oct; 283(43):29099-108. PubMed ID: 18708638 [TBL] [Abstract][Full Text] [Related]
14. The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. Sambade M; Kane PM J Biol Chem; 2004 Apr; 279(17):17361-5. PubMed ID: 14970230 [TBL] [Abstract][Full Text] [Related]
15. Topological characterization of the c, c', and c" subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae. Flannery AR; Graham LA; Stevens TH J Biol Chem; 2004 Sep; 279(38):39856-62. PubMed ID: 15252052 [TBL] [Abstract][Full Text] [Related]
16. Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex. Smardon AM; Nasab ND; Tarsio M; Diakov TT; Kane PM J Biol Chem; 2015 Nov; 290(46):27511-23. PubMed ID: 26405040 [TBL] [Abstract][Full Text] [Related]
17. A site-directed cross-linking approach to the characterization of subunit E-subunit G contacts in the vacuolar H+-ATPase stator. Jones RP; Durose LJ; Phillips C; Keen JN; Findlay JB; Harrison MA Mol Membr Biol; 2010 Aug; 27(4-6):147-59. PubMed ID: 20446876 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the membrane topology of transmembrane segments in the C-terminal hydrophobic domain of the yeast vacuolar ATPase subunit a (Vph1p) by chemical modification. Wang Y; Toei M; Forgac M J Biol Chem; 2008 Jul; 283(30):20696-702. PubMed ID: 18508769 [TBL] [Abstract][Full Text] [Related]
19. The first putative transmembrane segment of subunit c" (Vma16p) of the yeast V-ATPase is not necessary for function. Nishi T; Kawasaki-Nishi S; Forgac M J Biol Chem; 2003 Feb; 278(8):5821-7. PubMed ID: 12482875 [TBL] [Abstract][Full Text] [Related]
20. Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. Owegi MA; Pappas DL; Finch MW; Bilbo SA; Resendiz CA; Jacquemin LJ; Warrier A; Trombley JD; McCulloch KM; Margalef KL; Mertz MJ; Storms JM; Damin CA; Parra KJ J Biol Chem; 2006 Oct; 281(40):30001-14. PubMed ID: 16891312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]