BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12038973)

  • 1. Irreversible photobleaching of bacteriorhodopsin in a high-temperature intermediate state.
    Yokoyama Y; Sonoyama M; Mitaku S
    J Biochem; 2002 Jun; 131(6):785-90. PubMed ID: 12038973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lipid phase transition on molecular assembly and structural stability of bacteriorhodopsin reconstituted into phosphatidylcholine liposomes with different acyl-chain lengths.
    Yokoyama Y; Negishi L; Kitoh T; Sonoyama M; Asami Y; Mitaku S
    J Phys Chem B; 2010 Dec; 114(47):15706-11. PubMed ID: 21058698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced denaturation of bacteriorhodopsin solubilized by octyl-beta-glucoside.
    Mukai Y; Kamo N; Mitaku S
    Protein Eng; 1999 Sep; 12(9):755-9. PubMed ID: 10506285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photobleaching of bacteriorhodopsin solubilized with triton X-100.
    Sasaki T; Sonoyama M; Demura M; Mitaku S
    Photochem Photobiol; 2005; 81(5):1131-7. PubMed ID: 15934791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric investigation of the NABH4-modified bacteriorhodopsin in purple membrane from Halobacterium halobium.
    Shnyrov VL
    Biochem Mol Biol Int; 1994 Sep; 34(2):281-6. PubMed ID: 7849638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bleaching of bacteriorhodopsin by continuous light.
    Dancsházy Z; Tokaji Z; Dér A
    FEBS Lett; 1999 Apr; 450(1-2):154-7. PubMed ID: 10350076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy.
    Oshima K; Shigeta A; Makino Y; Kawamura I; Okitsu T; Wada A; Tuzi S; Iwasa T; Naito A
    Photochem Photobiol Sci; 2015 Sep; 14(9):1694-702. PubMed ID: 26169449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
    Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N
    J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pathway for the thermal destabilization of bacteriorhodopsin.
    Taneva SG; Caaveiro JM; Muga A; Goñi FM
    FEBS Lett; 1995 Jul; 367(3):297-300. PubMed ID: 7607327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared study of the L, M, and N intermediates of bacteriorhodopsin using the photoreaction of M.
    Ormos P; Chu K; Mourant J
    Biochemistry; 1992 Aug; 31(30):6933-7. PubMed ID: 1637826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural change of bacteriorhodopsin in the purple membrane above pH 10 decreases heterogeneity of the irreversible photobleaching components.
    Yokoyama Y; Sonoyama M; Nakano T; Mitaku S
    J Biochem; 2007 Sep; 142(3):325-33. PubMed ID: 17646179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin.
    Sass HJ; Gessenich R; Koch MH; Oesterhelt D; Dencher NA; Büldt G; Rapp G
    Biophys J; 1998 Jul; 75(1):399-405. PubMed ID: 9649397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bacteriorhodopsin photocycle: direct structural study of two substrates of the M-intermediate.
    Han BG; Vonck J; Glaeser RM
    Biophys J; 1994 Sep; 67(3):1179-86. PubMed ID: 7811931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriorhodopsin thermal stability: influence of bound cations and lipids on the intrinsic protein fluorescence.
    Tuparev N; Dobrikova A; Taneva S; Lazarova T
    Z Naturforsch C J Biosci; 2000; 55(5-6):355-60. PubMed ID: 10928546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS
    J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.