These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1203950)

  • 1. Neuronal migration during the early development of the cerebral cortex: a scanning electron microscopic study.
    Meller K; Tetzlaff W
    Cell Tissue Res; 1975 Nov; 163(3):313-25. PubMed ID: 1203950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning electron microscopic studies on the development of the chick retina.
    Meller K; Tetzlaff W
    Cell Tissue Res; 1976 Jul; 170(2):145-59. PubMed ID: 954051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tangential migration of neurons in the developing cerebral cortex.
    O'Rourke NA; Sullivan DP; Kaznowski CE; Jacobs AA; McConnell SK
    Development; 1995 Jul; 121(7):2165-76. PubMed ID: 7635060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Rosette formation in explants of human embryonic neocortex (an electron-microscopic study)].
    Smirnov EB; Puchkov VF; Otellin VA
    Morfologiia; 1996; 110(4):33-6. PubMed ID: 8983503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease.
    Hu H; Yang Y; Eade A; Xiong Y; Qi Y
    J Comp Neurol; 2007 May; 502(2):168-83. PubMed ID: 17479518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study.
    Choi BH; Lapham LW
    Brain Res; 1978 Jun; 148(2):295-311. PubMed ID: 77708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease.
    Hu H; Yang Y; Eade A; Xiong Y; Qi Y
    J Comp Neurol; 2007 Mar; 501(1):168-83. PubMed ID: 17206611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrodendritic gap junctions: a developmental approach.
    MollgÄrd K; Moller M
    Adv Neurol; 1975; 12():79-89. PubMed ID: 1155279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental events during the early stages of cerebral cortical neurogenesis in man. A correlative light, electron microscopic, immunohistochemical and Golgi study.
    Choi BH
    Acta Neuropathol; 1988; 75(5):441-7. PubMed ID: 2454011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural features of human cerebral cortex.
    Cragg BG
    J Anat; 1976 Apr; 121(Pt 2):331-62. PubMed ID: 179969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread neuronal ectopia associated with secondary defects in cerebrocortical chondroitin sulfate proteoglycans and basal lamina in MARCKS-deficient mice.
    Blackshear PJ; Silver J; Nairn AC; Sulik KK; Squier MV; Stumpo DJ; Tuttle JS
    Exp Neurol; 1997 May; 145(1):46-61. PubMed ID: 9184108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal migration and contact guidance in the primate telencephalon.
    Rakic P
    Postgrad Med J; 1978; 54 Suppl 1():25-40. PubMed ID: 364453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex.
    Voigt T; De Lima AD; Beckmann M
    J Comp Neurol; 1993 Apr; 330(1):48-64. PubMed ID: 8468403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains.
    Sheppard AM; Brunstrom JE; Thornton TN; Gerfen RW; Broekelmann TJ; McDonald JA; Pearlman AL
    Dev Biol; 1995 Dec; 172(2):504-18. PubMed ID: 8612967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focal alteration of dendrites and astrocytes in rat cerebral cortex during initiation of cobalt-induced epileptiform activity.
    Butler AB; Willmore LJ; Fuller PM; Bass NH
    Exp Neurol; 1976 Apr; 51(1):216-28. PubMed ID: 1261636
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of the basement membrane in neurogenesis and repair of injury in the central nervous system.
    Choi BH
    Microsc Res Tech; 1994 Jun; 28(3):193-203. PubMed ID: 8068982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of the dorsal cortex of the lizard Psammodromus algirus.
    Davila JC; Guirado S; de la Calle A; Marin-Giron F
    J Hirnforsch; 1986; 27(3):295-304. PubMed ID: 3760544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal distribution of tenascin-R in the developing human cerebral cortex parallels neuronal migration.
    El Ayachi I; Fernandez C; Baeza N; De Paula AM; Pesheva P; Figarella-Branger D
    J Comp Neurol; 2011 Aug; 519(12):2379-89. PubMed ID: 21456020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical function of the pial basement membrane in cortical histogenesis.
    Halfter W; Dong S; Yip YP; Willem M; Mayer U
    J Neurosci; 2002 Jul; 22(14):6029-40. PubMed ID: 12122064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning electron microscope studies on the development of the nervous system in vivo and in vitro.
    Meller K
    Int Rev Cytol; 1979; 56():23-56. PubMed ID: 457354
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.