These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 1203970)

  • 21. Further observations on the B-type neurosecretory cells in the thoracic ganglion of the crab, Potamon magnum magnum (Pretzman).
    Gorgees NS; Rashan LJ
    Z Mikrosk Anat Forsch; 1976; 90(5):959-67. PubMed ID: 1031526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrastructure of neurohemal organs (paraganglionic plates) of Trogulus nepaeformis (Scopoli) (Opiliones, Trogulidae) and release of neurosecretory material.
    Juberthie C; Juberthie-Jupeau L
    Cell Tissue Res; 1974 Jul; 150(1):67-78. PubMed ID: 4367863
    [No Abstract]   [Full Text] [Related]  

  • 23. Release of neurosecretory material by protrusions of bounding membranes extending through the axolemma, in Diphyllobothrium dendriticum (Cestoda).
    Gustafsson MK; Wikgren MC
    Cell Tissue Res; 1981; 220(3):473-9. PubMed ID: 7296642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastructural appearance of neurosecretory granules in the sinus gland of the crab after different fixation procedures.
    Nordmann JJ
    Cell Tissue Res; 1977 Dec; 185(4):557-63. PubMed ID: 23903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synaptic junctions in the sinus gland of the freshwater prawn Palaemon paucidens.
    Hisano S
    Cell Tissue Res; 1978 Jun; 189(3):435-40. PubMed ID: 657254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurosecretory granule formation in ligated axons: additional arguments for a local differentiation from a Golgi apparatus extension.
    Quatacker JR
    Histochem J; 2001 Mar; 33(3):129-33. PubMed ID: 11508335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An electron microscopic study of neurosecretion in the cerebral ganglion of the earthworm.
    al-Yousuf S; Konishi A; Nomura S; Mizuno N
    Neurosci Lett; 1992 Jun; 140(2):189-91. PubMed ID: 1501775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of neurosecretory activity in the freshwater pulmonate Lymnaea stagnalis (L.) with particular reference to the role of the eyes: a quantitative electron microscopical study.
    Roubos EW
    Cell Tissue Res; 1975 Jul; 160(3):291-314. PubMed ID: 50142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ultrastructure of the organ of Bellonci of Carcinus maenas maenas maenas (Crustacea: Decapoda).
    Smith G
    Cell Tissue Res; 1974; 155(1):127-34. PubMed ID: 4447977
    [No Abstract]   [Full Text] [Related]  

  • 30. Further studies of the secretory process in hypothalamo-neurohypophysial neurons: an analysis using immunocytochemistry, wheat germ agglutinin-peroxidase, and native peroxidase.
    Broadwell RD; Cataldo AM; Balin BJ
    J Comp Neurol; 1984 Sep; 228(2):155-67. PubMed ID: 6207213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autolysis in axon terminals of a new neurohaemal organ in the cockroach Periplaneta americana.
    Beattie TM
    Tissue Cell; 1976; 8(2):305-10. PubMed ID: 941137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastructure of the neurosecretory system of the Colorado potato beetle, Leptinotarsa decemlineata (Say). I. Characterization of the protocerebral neurosecretory cells.
    Schooneveld H
    Cell Tissue Res; 1974; 154(3):275-88. PubMed ID: 4140762
    [No Abstract]   [Full Text] [Related]  

  • 33. Ultrastructure of peptidergic neurosecretory axons in the developing neural lobe of the rat.
    Dellmann HD; Castel M; Linner JG
    Gen Comp Endocrinol; 1978 Dec; 36(4):477-86. PubMed ID: 86479
    [No Abstract]   [Full Text] [Related]  

  • 34. Histochemical observations on the giant neurosecretory cells of the thoracic ganglion of the adult and juvenile crabs, Potamon magnum magnum (Pretzman).
    Rashan LJ; Gorgees NS
    Acta Biol Acad Sci Hung; 1977; 28(3):299-310. PubMed ID: 79282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructural study of the pericardial organ-anterior ramifications complex neurosecretory terminals.
    Andrews PM
    Z Zellforsch Mikrosk Anat; 1973 Nov; 144(3):309-24. PubMed ID: 4362200
    [No Abstract]   [Full Text] [Related]  

  • 36. Quantitative ultrastructural tannic acid study of the relationship between electrical activity and peptide secretion by the bag cell neurons of Aplysia californica.
    Roubos EW; van de Ven AM; ter Maat A
    Neurosci Lett; 1990 Mar; 111(1-2):1-6. PubMed ID: 2336175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some observations on the fine structure of the sinus gland of a land crab, Gecarcinus lateralis.
    HODGE MH; CHAPMAN GB
    J Biophys Biochem Cytol; 1958 Sep; 4(5):571-4. PubMed ID: 13587551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fiddler crabs (Uca spp.) as model hosts for laboratory infections of Hematodinium perezi.
    O'Leary PA; Shields JD
    J Invertebr Pathol; 2017 Feb; 143():11-17. PubMed ID: 27836683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of neurosecretory granules and the chemistry of exocytosis.
    Gonzalez CB; Caorsi CE; Figueroa CD
    Ann N Y Acad Sci; 1993 Jul; 689():59-73. PubMed ID: 8373053
    [No Abstract]   [Full Text] [Related]  

  • 40. Autoradiographic evidence that transport of newly synthesized neuropeptides is directed to release sites in the X-organ--sinus gland of Cardisoma carnifex.
    Stuenkel E; Gillary E; Cooke I
    Cell Tissue Res; 1991 May; 264(2):253-62. PubMed ID: 1878945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.