These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12039722)

  • 1. An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum.
    Jensen Jr KA; Ryan ZC; Vanden Wymelenberg A; Cullen D; Hammel KE
    Appl Environ Microbiol; 2002 Jun; 68(6):2699-703. PubMed ID: 12039722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum.
    Cohen R; Suzuki MR; Hammel KE
    Appl Environ Microbiol; 2004 Jan; 70(1):324-31. PubMed ID: 14711659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum.
    Jensen KA; Houtman CJ; Ryan ZC; Hammel KE
    Appl Environ Microbiol; 2001 Jun; 67(6):2705-11. PubMed ID: 11375184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum trabeum.
    Varela E; Mester T; Tien M
    Arch Microbiol; 2003 Oct; 180(4):251-6. PubMed ID: 12920506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction.
    Kerem Z; hammel ; Hammel KE
    FEBS Lett; 1999 Mar; 446(1):49-54. PubMed ID: 10100613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood.
    Daniel G; Volc J; Filonova L; Plíhal O; Kubátová E; Halada P
    Appl Environ Microbiol; 2007 Oct; 73(19):6241-53. PubMed ID: 17660304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.
    Krueger MC; Hofmann U; Moeder M; Schlosser D
    PLoS One; 2015; 10(7):e0131773. PubMed ID: 26147966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,4-Benzoquinone reductase from basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis.
    Brock BJ; Gold MH
    Arch Biochem Biophys; 1996 Jul; 331(1):31-40. PubMed ID: 8660680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A potential mechanism for degradation of 4,5-dichloro-2-(n-octyl)-3[2H]-isothiazolone (DCOIT) by brown-rot fungus Gloeophyllum trabeum.
    Zhu Y; Xue J; Cao J; Xiao H
    J Hazard Mater; 2017 Sep; 337():72-79. PubMed ID: 28505510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of carbon source on wood decay-associated gene expression in sequential hyphal zones of the brown rot fungus Gloeophyllum trabeum.
    Umezawa K; Itakura S
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1782-1788. PubMed ID: 33942872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human dioxin-inducible NAD(P)H: quinone oxidoreductase cDNA-encoded protein expressed in COS-1 cells is identical to diaphorase 4.
    Shaw PM; Reiss A; Adesnik M; Nebert DW; Schembri J; Jaiswal AK
    Eur J Biochem; 1991 Jan; 195(1):171-6. PubMed ID: 1899380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation.
    Umezawa K; Niikura M; Kojima Y; Goodell B; Yoshida M
    PLoS One; 2020; 15(12):e0243984. PubMed ID: 33315957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum.
    Tewalt J; Schilling J
    Appl Microbiol Biotechnol; 2010 May; 86(6):1785-93. PubMed ID: 20177887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and crystallization of rat liver NAD(P)H:(quinone-acceptor) oxidoreductase by cibacron blue affinity chromatography: identification of a new and potent inhibitor.
    Prochaska HJ
    Arch Biochem Biophys; 1988 Dec; 267(2):529-38. PubMed ID: 3214167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum.
    Cohen R; Suzuki MR; Hammel KE
    Appl Environ Microbiol; 2005 May; 71(5):2412-7. PubMed ID: 15870328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of NAD(P)H: (quinone-acceptor) oxidoreductase of sugarbeet cells.
    Trost P; Bonora P; Scagliarini S; Pupillo P
    Eur J Biochem; 1995 Dec; 234(2):452-8. PubMed ID: 8536688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widespread ability of fungi to drive quinone redox cycling for biodegradation.
    Krueger MC; Bergmann M; Schlosser D
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal hydroquinones contribute to brown rot of wood.
    Suzuki MR; Hunt CG; Houtman CJ; Dalebroux ZD; Hammel KE
    Environ Microbiol; 2006 Dec; 8(12):2214-23. PubMed ID: 17107562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.
    Vienozinskis J; Butkus A; Cenas N; Kulys J
    Biochem J; 1990 Jul; 269(1):101-5. PubMed ID: 2375745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.