BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 12040899)

  • 1. Tuberous sclerosis as an underlying basis for infantile spasm.
    Yeung RS
    Int Rev Neurobiol; 2002; 49():315-32. PubMed ID: 12040899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
    Chan JA; Zhang H; Roberts PS; Jozwiak S; Wieslawa G; Lewin-Kowalik J; Kotulska K; Kwiatkowski DJ
    J Neuropathol Exp Neurol; 2004 Dec; 63(12):1236-42. PubMed ID: 15624760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuberous sclerosis-related gene expression in normal and dysplastic brain.
    Vinters HV; Kerfoot C; Catania M; Emelin JK; Roper SN; DeClue JE
    Epilepsy Res; 1998 Sep; 32(1-2):12-23. PubMed ID: 9761305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-localization of TSC1 and TSC2 gene products in tubers of patients with tuberous sclerosis.
    Johnson MW; Emelin JK; Park SH; Vinters HV
    Brain Pathol; 1999 Jan; 9(1):45-54. PubMed ID: 9989450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers.
    Talos DM; Kwiatkowski DJ; Cordero K; Black PM; Jensen FE
    Ann Neurol; 2008 Apr; 63(4):454-65. PubMed ID: 18350576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minute amounts of hamartin wildtype rescue the emergence of tuber-like lesions in conditional Tsc1 ablated mice.
    Robens BK; Grote A; Pitsch J; Schoch S; Cardoso C; Becker AJ
    Neurobiol Dis; 2016 Nov; 95():134-44. PubMed ID: 27425891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis.
    Wenzel HJ; Patel LS; Robbins CA; Emmi A; Yeung RS; Schwartzkroin PA
    Acta Neuropathol; 2004 Aug; 108(2):97-108. PubMed ID: 15185103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biallelic TSC gene inactivation in tuberous sclerosis complex.
    Crino PB; Aronica E; Baltuch G; Nathanson KL
    Neurology; 2010 May; 74(21):1716-23. PubMed ID: 20498439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous loss of hamartin and tuberin from the cerebrum, kidney and heart with tuberous sclerosis.
    Mizuguchi M; Ikeda K; Takashima S
    Acta Neuropathol; 2000 May; 99(5):503-10. PubMed ID: 10805093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex.
    Takahashi DK; Dinday MT; Barbaro NM; Baraban SC
    Epilepsia; 2004 Dec; 45(12):1525-30. PubMed ID: 15571510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pam and its ortholog highwire interact with and may negatively regulate the TSC1.TSC2 complex.
    Murthy V; Han S; Beauchamp RL; Smith N; Haddad LA; Ito N; Ramesh V
    J Biol Chem; 2004 Jan; 279(2):1351-8. PubMed ID: 14559897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuberin phosphorylation regulates its interaction with hamartin. Two proteins involved in tuberous sclerosis.
    Aicher LD; Campbell JS; Yeung RS
    J Biol Chem; 2001 Jun; 276(24):21017-21. PubMed ID: 11290735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for separable functions of tuberous sclerosis gene products in mammalian cell cycle regulation.
    Miloloza A; Kubista M; Rosner M; Hengstschläger M
    J Neuropathol Exp Neurol; 2002 Feb; 61(2):154-63. PubMed ID: 11853018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuberous sclerosis complex: molecular pathogenesis and animal models.
    Piedimonte LR; Wailes IK; Weiner HL
    Neurosurg Focus; 2006 Jan; 20(1):E4. PubMed ID: 16459994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex.
    Hino O; Kobayashi T
    Cancer Sci; 2017 Jan; 108(1):5-11. PubMed ID: 27862655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular pathogenesis of tuber formation in tuberous sclerosis complex.
    Crino PB
    J Child Neurol; 2004 Sep; 19(9):716-25. PubMed ID: 15563019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of expression of tuberin and hamartin in tuberous sclerosis complex-associated but not in sporadic angiofibromas.
    Fackler I; DeClue JE; Rust H; Vu PA; Kutzner H; Rütten A; Kaddu S; Sander CA; Volkenandt M; Johnson MW; Vinters HV; Wienecke R
    J Cutan Pathol; 2003 Mar; 30(3):174-7. PubMed ID: 12641776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hamartin variants that are frequent in focal dysplasias and cortical tubers have reduced tuberin binding and aberrant subcellular distribution in vitro.
    Lugnier C; Majores M; Fassunke J; Pernhorst K; Niehusmann P; Simon M; Nellist M; Schoch S; Becker A
    J Neuropathol Exp Neurol; 2009 Oct; 68(10):1136-46. PubMed ID: 19918125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspects of tuberous sclerosis complex (TSC) protein function in the brain.
    Ramesh V
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):579-83. PubMed ID: 12773159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin.
    Hodges AK; Li S; Maynard J; Parry L; Braverman R; Cheadle JP; DeClue JE; Sampson JR
    Hum Mol Genet; 2001 Dec; 10(25):2899-905. PubMed ID: 11741833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.