These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 120416)

  • 1. Ultrastructure of supraspinal dorsal root projections in the toad. II. The cerebellar granular layer.
    Corvaja N; Buisseret-Delmas C; Pellegrini M
    J Neurocytol; 1979 Dec; 8(6):687-95. PubMed ID: 120416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of degenerating cerebellothalamic terminals in the ventral medial nucleus of the cat.
    Kultas-Ilinsky K; Ilinsky IA; Young PA; Smith KR
    Exp Brain Res; 1980 Jan; 38(2):125-35. PubMed ID: 7188906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of dorsal root axons to laminae IV, V, and VI of the Macaque spinal cord: a quantitative electron microscopic study.
    Ralston HJ; Ralston DD
    J Comp Neurol; 1982 Dec; 212(4):435-48. PubMed ID: 6891705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light and electron microscopic autoradiographic study of the dorsal root projections to the cat dorsal horn.
    Snyder RL
    Neuroscience; 1982 Jun; 7(6):1417-37. PubMed ID: 6889693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of supraspinal dorsal root projections in the toads. I. The obex region.
    Corvaja N; Pellegrini M; Buisseret-Delmas C
    Brain Res; 1978 Mar; 142(3):413-24. PubMed ID: 416880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the rhesus monkey.
    Knyihar-Csillik E; Csillik B; Rakic P
    J Comp Neurol; 1982 Oct; 210(4):357-75. PubMed ID: 7142447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructure of dorsal root projections in the toad spinal cord. An experimental neuroanatomical study following transection of dorsal root.
    Corvaja N; Pellegrini M
    Arch Ital Biol; 1975 Jun; 113(2):122-49. PubMed ID: 810096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Egger MD
    Brain Res; 1984 Jun; 302(1):135-50. PubMed ID: 6203612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultrastructural examination of dorsal root input to the sacral secondary visceral gray.
    Nolan MF; Brown HK
    J Neurol Sci; 1981; 52(2-3):359-65. PubMed ID: 7310439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microscopic identification of postsynaptic dorsal root terminals: a possible substrate of dorsal root potentials in the frog spinal cord.
    Székely G; Kosaras B
    Exp Brain Res; 1977 Sep; 29(3-4):531-9. PubMed ID: 303179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation in the number of presynaptic dense projections and synaptic vesicles in remaining parallel fibres following cerebellar lesions.
    Hillman DE; Chen S
    J Neurocytol; 1985 Aug; 14(4):673-87. PubMed ID: 2415688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and ultrastructural identification of dorsal column nuclear synaptic terminals in the basilar pontine gray of rats.
    Kosinski RJ; Azizi SA; Border BG; Mihailoff GA
    J Comp Neurol; 1986 Nov; 253(1):92-104. PubMed ID: 2432100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary afferent projections to the sacral secondary visceral gray: a quantitative electron microscopic examination in the cat.
    Nolan MF; Brown HK
    Exp Neurol; 1984 Jul; 85(1):19-29. PubMed ID: 6203774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dorsal rhizotomy on the several types of primary afferent terminals in laminae I-III of the rat spinal cord. An electron microscope study.
    Coimbra A; Ribeiro-da-Silva A; Pignatelli D
    Anat Embryol (Berl); 1984; 170(3):279-87. PubMed ID: 6441484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light microscopic and ultrastructural localization of immunoreactive substance P in the dorsal horn of monkey spinal cord.
    DiFiglia M; Aronin N; Leeman SE
    Neuroscience; 1982 May; 7(5):1127-39. PubMed ID: 6180349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopic identification of cerebellopontine axon terminals in the opossum.
    Mihailoff GA
    Brain Res; 1979 Apr; 165(1):1-12. PubMed ID: 427574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periterminal synaptic organization of primary afferents in laminae I and IIo of the rat spinal cord, as shown after anterograde HRP labelling.
    Cruz F; Lima D; Coimbra A
    J Neurocytol; 1993 Mar; 22(3):191-204. PubMed ID: 8478641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord--III. Effects of peripheral axotomy with special reference to galanin.
    Zhang X; Bean AJ; Wiesenfeld-Hallin Z; Xu XJ; Hökfelt T
    Neuroscience; 1995 Feb; 64(4):893-915. PubMed ID: 7538640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projections to the inferior colliculus from the dorsal column nuclei. An experimental electron microscopic study in the cat.
    Paloff AM; Usunoff KG
    J Hirnforsch; 1992; 33(6):597-610. PubMed ID: 1283610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents.
    Traub RJ; Allen B; Humphrey E; Ruda MA
    J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.