BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 12042354)

  • 1. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones.
    Filosa JA; Dean JB; Putnam RW
    J Physiol; 2002 Jun; 541(Pt 2):493-509. PubMed ID: 12042354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2).
    Wang W; Bradley SR; Richerson GB
    J Physiol; 2002 May; 540(Pt 3):951-70. PubMed ID: 11986382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatic vs. dendritic responses to hypercapnia in chemosensitive locus coeruleus neurons from neonatal rats.
    Ritucci NA; Dean JB; Putnam RW
    Am J Physiol Cell Physiol; 2005 Nov; 289(5):C1094-104. PubMed ID: 16014703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemosensitive response of neurons from the locus coeruleus (LC) to hypercapnic acidosis with clamped intracellular pH.
    Hartzler LK; Dean JB; Putnam RW
    Adv Exp Med Biol; 2008; 605():333-7. PubMed ID: 18085295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels.
    Filosa JA; Putnam RW
    Am J Physiol Cell Physiol; 2003 Jan; 284(1):C145-55. PubMed ID: 12388081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemosensitivity of rat medullary raphe neurones in primary tissue culture.
    Wang W; Pizzonia JH; Richerson GB
    J Physiol; 1998 Sep; 511 ( Pt 2)(Pt 2):433-50. PubMed ID: 9706021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locus coeruleus neurones in vitro: pH-sensitive oscillations of membrane potential in an electrically coupled network.
    Oyamada Y; Andrzejewski M; Mückenhoff K; Scheid P; Ballantyne D
    Respir Physiol; 1999 Dec; 118(2-3):131-47. PubMed ID: 10647858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient outwardly rectifying A currents are involved in the firing rate response to altered CO2 in chemosensitive locus coeruleus neurons from neonatal rats.
    Li KY; Putnam RW
    Am J Physiol Regul Integr Comp Physiol; 2013 Oct; 305(7):R780-92. PubMed ID: 23948777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.
    Santin JM; Watters KC; Putnam RW; Hartzler LK
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(12):R1451-64. PubMed ID: 24108868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat.
    Oyamada Y; Ballantyne D; Mückenhoff K; Scheid P
    J Physiol; 1998 Dec; 513 ( Pt 2)(Pt 2):381-98. PubMed ID: 9806990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats.
    Lopes LT; Patrone LG; Li KY; Imber AN; Graham CD; Gargaglioni LH; Putnam RW
    Neuroscience; 2016 Jun; 324():446-68. PubMed ID: 27001176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of extracellular acid-base disturbances on the intracellular pH of neurones cultured from rat medullary raphe or hippocampus.
    Bouyer P; Bradley SR; Zhao J; Wang W; Richerson GB; Boron WF
    J Physiol; 2004 Aug; 559(Pt 1):85-101. PubMed ID: 15194736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats.
    Stunden CE; Filosa JA; Garcia AJ; Dean JB; Putnam RW
    Respir Physiol; 2001 Sep; 127(2-3):135-55. PubMed ID: 11504586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current.
    Pineda J; Aghajanian GK
    Neuroscience; 1997 Apr; 77(3):723-43. PubMed ID: 9070748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal development and activation of L-type Ca2+ currents in locus ceruleus neurons: implications for a role for Ca2+ in central chemosensitivity.
    Imber AN; Putnam RW
    J Appl Physiol (1985); 2012 May; 112(10):1715-26. PubMed ID: 22403350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRP channels are involved in mediating hypercapnic Ca2+ responses in rat glia-rich medullary cultures independent of extracellular pH.
    Hirata Y; Oku Y
    Cell Calcium; 2010; 48(2-3):124-32. PubMed ID: 20728216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agmatine does not have activity at alpha 2-adrenoceptors which modulate the firing rate of locus coeruleus neurones: an electrophysiological study in rat.
    Pineda J; Ruiz-Ortega JA; Martín-Ruiz R; Ugedo L
    Neurosci Lett; 1996 Nov; 219(2):103-6. PubMed ID: 8971790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of membrane potential and intracellular pH to hypercapnia in neurons and astrocytes from rat retrotrapezoid nucleus.
    Ritucci NA; Erlichman JS; Leiter JC; Putnam RW
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R851-61. PubMed ID: 15905224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Ca
    Imber AN; Patrone LGA; Li KY; Gargaglioni LH; Putnam RW
    Neuroscience; 2018 Jun; 381():59-78. PubMed ID: 29698749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of TRP channels in the CO₂ chemosensitivity of locus coeruleus neurons.
    Cui N; Zhang X; Tadepalli JS; Yu L; Gai H; Petit J; Pamulapati RT; Jin X; Jiang C
    J Neurophysiol; 2011 Jun; 105(6):2791-801. PubMed ID: 21430274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.