These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12043813)

  • 1. A comparison of MCNP4C electron transport with ITS 3.0 and experiment at incident energies between 100 keV and 20 MeV: influence of voxel size, substeps and energy indexing algorithm.
    Schaart DR; Jansen JT; Zoetelief J; de Leege PF
    Phys Med Biol; 2002 May; 47(9):1459-84. PubMed ID: 12043813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O; Li XA
    Med Phys; 2002 May; 29(5):835-47. PubMed ID: 12033580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.
    Maigne L; Perrot Y; Schaart DR; Donnarieix D; Breton V
    Phys Med Biol; 2011 Feb; 56(3):811-27. PubMed ID: 21239846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter dependence of the MCNP electron transport in determining dose distributions.
    Reynaert N; Palmans H; Thierens H; Jeraj R
    Med Phys; 2002 Oct; 29(10):2446-54. PubMed ID: 12408322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes.
    Koivunoro H; Siiskonen T; Kotiluoto P; Auterinen I; Hippelainen E; Savolainen S
    Med Phys; 2012 Mar; 39(3):1335-44. PubMed ID: 22380366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A verification of the Monte Carlo code MCNP for thick target bremsstrahlung calculations.
    DeMarco JJ; Solberg TD; Wallace RE; Smathers JB
    Med Phys; 1995 Jan; 22(1):11-6. PubMed ID: 7715563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consistency test of the electron transport algorithm in the GEANT4 Monte Carlo code.
    Poon E; Seuntjens J; Verhaegen F
    Phys Med Biol; 2005 Feb; 50(4):681-94. PubMed ID: 15773627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between an event-by-event Monte Carlo code, NOREC, and ETRAN for electron scaled point kernels between 20 keV and 1 MeV.
    Cho SH; Vassiliev ON; Horton JL
    Radiat Environ Biophys; 2007 Mar; 46(1):77-83. PubMed ID: 17219152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Monte Carlo simulations of photon/electron dosimetry in microscale applications.
    Joneja OP; Negreanu C; Stepanek J; Chawl R
    Australas Phys Eng Sci Med; 2003 Jun; 26(2):63-9. PubMed ID: 12956187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system.
    Stewart RD; Wilson WE; McDonald JC; Strom DJ
    Phys Med Biol; 2002 Jan; 47(1):79-88. PubMed ID: 11814229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.
    Ye SJ; Brezovich IA; Pareek P; Naqvi SA
    Phys Med Biol; 2004 Feb; 49(3):387-97. PubMed ID: 15012008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of photon energy deposition kernels and electron dose point kernels in water.
    Mainegra-Hing E; Rogers DW; Kawrakow I
    Med Phys; 2005 Mar; 32(3):685-99. PubMed ID: 15839340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The radial dose function of low-energy brachytherapy seeds in different solid phantoms: comparison between calculations with the EGSnrc and MCNP4C Monte Carlo codes and measurements.
    Reniers B; Verhaegen F; Vynckier S
    Phys Med Biol; 2004 Apr; 49(8):1569-82. PubMed ID: 15152693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.