These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12043816)

  • 1. Some present problems and a proposed experimental phantom for SAR compliance testing of cellular telephones at 835 and 1900 MHz.
    Gandhi OP; Kang G
    Phys Med Biol; 2002 May; 47(9):1501-18. PubMed ID: 12043816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of safety distance limits for a human near a cellular base station antenna, adopting the IEEE standard or ICNIRP guidelines.
    Cooper J; Marx B; Buhl J; Hombach V
    Bioelectromagnetics; 2002 Sep; 23(6):429-43. PubMed ID: 12210561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAR changes in a human head model for plane wave exposure (500 - 2500 MHz) and a comparison with IEEE 2005 safety limits.
    Yelkenci T; Paker S
    J Microw Power Electromagn Energy; 2008; 42(2):64-8. PubMed ID: 19227077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SARs for pocket-mounted mobile telephones at 835 and 1900 MHz.
    Kang G; Gandhi OP
    Phys Med Biol; 2002 Dec; 47(23):4301-13. PubMed ID: 12502051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of FDTD-calculated specific absorption rate in adults and children when using a mobile phone at 900 and 1800 MHz.
    Martínez-Búrdalo M; Martín A; Anguiano M; Villar R
    Phys Med Biol; 2004 Jan; 49(2):345-54. PubMed ID: 15083675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of numerical and experimental methods for determination of SAR and radiation patterns of handheld wireless telephones.
    Gandhi OP; Lazzi G; Tinniswood A; Yu QS
    Bioelectromagnetics; 1999; Suppl 4():93-101. PubMed ID: 10334718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical evaluation of SAR distribution and temperature changes around a metallic plate in the head of a RF exposed worker.
    McIntosh RL; Anderson V; McKenzie RJ
    Bioelectromagnetics; 2005 Jul; 26(5):377-88. PubMed ID: 15924346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of peak SAR levels in concentric sphere head models of children and adults for irradiation by a dipole at 900 MHz.
    Anderson V
    Phys Med Biol; 2003 Oct; 48(20):3263-75. PubMed ID: 14620057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a rat head exposure system for simulating human exposure to RF fields from handheld wireless telephones.
    Chou CK; Chan KW; McDougall JA; Guy AW
    Bioelectromagnetics; 1999; Suppl 4():75-92. PubMed ID: 10334717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz.
    Joó E; Szász A; Szendrö P
    Electromagn Biol Med; 2006; 25(2):103-12. PubMed ID: 16771299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of dentures on SAR in the visible Chinese human head voxel phantom exposed to a mobile phone at 900 and 1800 MHz.
    Yu D; Zhang R; Liu Q
    Bioelectromagnetics; 2012 Sep; 33(6):508-17. PubMed ID: 22388567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculated SAR distributions in a human voxel phantom due to the reflection of electromagnetic fields from a ground plane between 65 MHz and 2 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2008 May; 53(9):2277-89. PubMed ID: 18401062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric comparison of the specific anthropomorphic mannequin (SAM) to 14 anatomical head models using a novel definition for the mobile phone positioning.
    Kainz W; Christ A; Kellom T; Seidman S; Nikoloski N; Beard B; Kuster N
    Phys Med Biol; 2005 Jul; 50(14):3423-45. PubMed ID: 16177519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific absorption rate levels measured in a phantom head exposed to radio frequency transmissions from analog hand-held mobile phones.
    Anderson V; Joyner KH
    Bioelectromagnetics; 1995; 16(1):60-9. PubMed ID: 7748204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.
    Hirata A; Laakso I; Oizumi T; Hanatani R; Chan KH; Wiart J
    Phys Med Biol; 2013 Feb; 58(4):903-21. PubMed ID: 23337764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head.
    de Salles AA; Bulla G; Rodriguez CE
    Electromagn Biol Med; 2006; 25(4):349-60. PubMed ID: 17178592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of exposure and SAR estimation for adult and child heads exposed to radiofrequency energy from portable communication devices.
    Bit-Babik G; Guy AW; Chou CK; Faraone A; Kanda M; Gessner A; Wang J; Fujiwara O
    Radiat Res; 2005 May; 163(5):580-90. PubMed ID: 15850420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical and experimental comparison of human head phantoms for compliance testing of mobile telephone equipment.
    Christ A; Chavannes N; Nikoloski N; Gerber HU; Poković K; Kuster N
    Bioelectromagnetics; 2005 Feb; 26(2):125-37. PubMed ID: 15672370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of mobile phone design features affecting radiofrequency power absorbed in a human head phantom.
    Kuehn S; Kelsh MA; Kuster N; Sheppard AR; Shum M
    Bioelectromagnetics; 2013 Sep; 34(6):479-88. PubMed ID: 23533135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.