These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12044068)

  • 21. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of humic substances from water by means of calcium-ion-enriched natural zeolites.
    Capasso S; Colella C; Coppola E; Iovino P; Salvestrini S
    Water Environ Res; 2007 Mar; 79(3):305-9. PubMed ID: 17469662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persulfate regeneration of trichloroethylene spent activated carbon.
    Liang C; Lin YT; Shin WH
    J Hazard Mater; 2009 Aug; 168(1):187-92. PubMed ID: 19264399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation.
    Okawa K; Suzuki K; Takeshita T; Nakano K
    Water Res; 2007 Mar; 41(5):1045-51. PubMed ID: 17224174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysed waste materials show potential for remediation of trichloroethylene-contaminated water.
    Siggins A; Abram F; Healy MG
    J Hazard Mater; 2020 May; 390():121909. PubMed ID: 31882342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preferential adsorption of fluorescing fulvic and humic acid components on activated carbon using flow field-flow fractionation analysis.
    Schmit KH; Wells MJ
    J Environ Monit; 2002 Feb; 4(1):75-84. PubMed ID: 11873775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites.
    Joo JC; Ahn CH; Jang DG; Yoon YH; Kim JK; Campos L; Ahn H
    J Hazard Mater; 2013 Dec; 263 Pt 2():569-74. PubMed ID: 24239256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.
    Deng B; Kim ES
    Water Environ Res; 2016 May; 88(5):394-402. PubMed ID: 27131303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Characteristics and influencing factors of trichloroethylene adsorption in different soil types].
    He L; Qiu ZF; Lü SG; Lu ZC; Wang ZL; Sui Q; Lin KF; Liu YD
    Huan Jing Ke Xue; 2012 Nov; 33(11):3976-82. PubMed ID: 23323434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.
    Ahmad M; Lee SS; Dou X; Mohan D; Sung JK; Yang JE; Ok YS
    Bioresour Technol; 2012 Aug; 118():536-44. PubMed ID: 22721877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids.
    Koelmans AA; Meulman B; Meijer T; Jonker MT
    Environ Sci Technol; 2009 Feb; 43(3):736-42. PubMed ID: 19245010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of calcium on adsorption capacity of powdered activated carbon.
    Li G; Shang J; Wang Y; Li Y; Gao H
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S101-5. PubMed ID: 25078809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers.
    Rajic L; Fallahpour N; Nazari R; Alshawabkeh AN
    Electrochim Acta; 2015 Nov; 181():123-129. PubMed ID: 26549889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competitive Effects of Nondisplaceable Organic Compounds on Trichloroethylene Uptake by Activated Carbon. I. Thermodynamic Predictions and Model Sensitivity Analyses.
    Kilduff JE; Karanfil T; Weber WJ
    J Colloid Interface Sci; 1998 Sep; 205(2):271-279. PubMed ID: 9735190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption of DOM and hydrophobic organic compounds onto sewage-based activated carbon.
    Björklund K; Li LY
    Water Sci Technol; 2016; 74(4):852-60. PubMed ID: 27533860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry.
    Engel M; Chefetz B
    Environ Pollut; 2016 Jun; 213():90-98. PubMed ID: 26878603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.
    Li H; Chen YQ; Chen S; Wang XL; Guo S; Qiu YF; Liu YD; Duan XL; Yu YJ
    PLoS One; 2017; 12(3):e0172337. PubMed ID: 28264061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Depassivation of aged Fe 0 by divalent cations: correlation between contaminant degradation and surface complexation constants.
    Liu T; Li X; Waite TD
    Environ Sci Technol; 2014 Dec; 48(24):14564-71. PubMed ID: 25383907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of uranium(VI) from water using hydroxyapatite coated activated carbon powder nanocomposite.
    Rout S; Muduli B; Kumar A; Pulhani V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):596-605. PubMed ID: 32003307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.