These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12044072)

  • 1. Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices.
    Crowther J; Kay D; Wyer MD
    Water Res; 2002 Apr; 36(7):1725-34. PubMed ID: 12044072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative catchment profiling to apportion faecal indicator organism budgets for the Ribble system, the UK's sentinel drainage basin for Water Framework Directive research.
    Stapleton CM; Wyer MD; Crowther J; McDonald AT; Kay D; Greaves J; Wither A; Watkins J; Francis C; Humphrey N; Bradford M
    J Environ Manage; 2008 Jun; 87(4):535-50. PubMed ID: 18082929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling faecal indicator concentrations in large rural catchments using land use and topographic data.
    Crowther J; Wyer MD; Bradford M; Kay D; Francis CA
    J Appl Microbiol; 2003; 94(6):962-73. PubMed ID: 12752803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting faecal indicator fluxes using digital land use data in the UK's sentinel Water Framework Directive catchment: the Ribble study.
    Kay D; Wyer M; Crowther J; Stapleton C; Bradford M; McDonald A; Greaves J; Francis C; Watkins J
    Water Res; 2005 Oct; 39(16):3967-81. PubMed ID: 16112711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable reduction in the flux of microbial compliance parameters from urban and arable land use to coastal bathing waters by a wetland ecosystem produced by a marine flood defence structure.
    Kay D; Wyer MD; Crowther J; Wilkinson J; Stapleton C; Glass P
    Water Res; 2005 Sep; 39(14):3320-32. PubMed ID: 16009396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.
    Kay D; Anthony S; Crowther J; Chambers BJ; Nicholson FA; Chadwick D; Stapleton CM; Wyer MD
    Sci Total Environ; 2010 Nov; 408(23):5649-56. PubMed ID: 19717181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faecal indicator organism concentrations and catchment export coefficients in the UK.
    Kay D; Crowther J; Stapleton CM; Wyer MD; Fewtrell L; Anthony S; Bradford M; Edwards A; Francis CA; Hopkins M; Kay C; McDonald AT; Watkins J; Wilkinson J
    Water Res; 2008 May; 42(10-11):2649-61. PubMed ID: 18295819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of agricultural practices and river catchment characteristics on river and bathing water quality.
    Aitken MN
    Water Sci Technol; 2003; 48(10):217-24. PubMed ID: 15137173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting diffuse microbial pollution risk across catchments: The performance of SCIMAP and recommendations for future development.
    Porter KDH; Reaney SM; Quilliam RS; Burgess C; Oliver DM
    Sci Total Environ; 2017 Dec; 609():456-465. PubMed ID: 28755595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.
    Nnane DE; Ebdon JE; Taylor HD
    Water Res; 2011 Mar; 45(6):2235-46. PubMed ID: 21324505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.
    Fujioka RS
    Water Sci Technol; 2001; 44(7):181-8. PubMed ID: 11724486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal and within-herd variability of E. coli concentrations in fresh dairy faeces.
    Oliver DM
    Lett Appl Microbiol; 2014 Jul; 59(1):86-92. PubMed ID: 24641491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal bacterial quality of a lowland agricultural stream in northeast Scotland.
    Rodgers P; Soulsby C; Hunter C; Petry J
    Sci Total Environ; 2003 Oct; 314-316():289-302. PubMed ID: 14499538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting microbial pollution concentrations in UK rivers in response to land use change.
    Hampson D; Crowther J; Bateman I; Kay D; Posen P; Stapleton C; Wyer M; Fezzi C; Jones P; Tzanopoulos J
    Water Res; 2010 Sep; 44(16):4748-59. PubMed ID: 20708770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indicator organism sources and coastal water quality: a catchment study on the island of Jersey.
    Wyer MD; Kay D; Jackson GF; Dawson HM; Yeo J; Tanguy L
    J Appl Bacteriol; 1995 Mar; 78(3):290-6. PubMed ID: 7730205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faecal indicator organism inputs to watercourses from streamside pastures grazed by cattle: Before and after implementation of streambank fencing.
    Kay D; Crowther J; Stapleton CM; Wyer MD
    Water Res; 2018 Oct; 143():229-239. PubMed ID: 29960177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Faecal indicator impacts on recreational waters: budget studies and diffuse source modelling.
    Kay D; Wyer MD; Crowther J; Fewtrell L
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():70S-82S. PubMed ID: 21182695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment.
    Neill AJ; Tetzlaff D; Strachan NJC; Hough RL; Avery LM; Watson H; Soulsby C
    Sci Total Environ; 2018 Jan; 612():840-852. PubMed ID: 28881307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cattle-derived microbial input to source water catchments: An experimental assessment of stream crossing modification.
    Smolders A; Rolls RJ; Ryder D; Watkinson A; Mackenzie M
    J Environ Manage; 2015 Jun; 156():143-9. PubMed ID: 25841195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking on-farm dairy management practices to storm-flow fecal coliform loading for California coastal watersheds.
    Lewis DJ; Atwill ER; Lennox MS; Hou L; Karle B; Tate KW
    Environ Monit Assess; 2005 Aug; 107(1-3):407-25. PubMed ID: 16418926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.