BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 12044479)

  • 1. Regeneration of acutely and chronically injured descending respiratory pathways within post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2002; 112(1):141-52. PubMed ID: 12044479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regrowth of acute and chronic injured spinal pathways within supra-lesional post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2000; 101(1):197-210. PubMed ID: 11068148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regrowth of central respiratory pathways in neural graft. From research tool on the axonal regeneration to a strategy of post-traumatic reparation].
    Gauthier P; Decherchi P
    C R Seances Soc Biol Fil; 1997; 191(5-6):695-716. PubMed ID: 9587480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of respiratory pathways within spinal peripheral nerve grafts.
    Decherchi P; Lammari-Barreault N; Gauthier P
    Exp Neurol; 1996 Jan; 137(1):1-14. PubMed ID: 8566201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro pre-degenerated nerve autografts support CNS axonal regeneration.
    Decherchi P; Gauthier P
    Brain Res; 1996 Jul; 726(1-2):181-8. PubMed ID: 8836559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional reconnections established by central respiratory neurons regenerating axons into a nerve graft bridging the respiratory centers to the cervical spinal cord.
    Gauthier P; Réga P; Lammari-Barreault N; Polentes J
    J Neurosci Res; 2002 Oct; 70(1):65-81. PubMed ID: 12237865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central respiratory neuronal activity after axonal regeneration within blind-ended peripheral nerve grafts: time course of recovery and loss of functional neurons.
    Lammari-Barreault N; Rega P; Gauthier P
    Exp Brain Res; 1994; 98(2):238-44. PubMed ID: 8050510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats.
    Novikova LN; Novikov LN; Kellerth JO
    J Comp Neurol; 2002 Oct; 452(3):255-63. PubMed ID: 12353221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury.
    Dinh P; Bhatia N; Rasouli A; Suryadevara S; Cahill K; Gupta R
    Spine (Phila Pa 1976); 2007 Apr; 32(9):943-9. PubMed ID: 17450067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNS axonal regeneration with peripheral nerve grafts cryopreserved by vitrification: cytological and functional aspects.
    Decherchi P; Lammari-Barreault N; Cochard P; Carin M; Réga P; Pio J; Péllissier JF; Ladaique P; Novakovitch G; Gauthier P
    Cryobiology; 1997 May; 34(3):214-39. PubMed ID: 9160994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regeneration of adult rat sensory axons into intraspinal nerve grafts: promoting effects of conditioning lesion and graft predegeneration.
    Oudega M; Varon S; Hagg T
    Exp Neurol; 1994 Oct; 129(2):194-206. PubMed ID: 7957734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.
    Tom VJ; Sandrow-Feinberg HR; Miller K; Santi L; Connors T; Lemay MA; Houlé JD
    J Neurosci; 2009 Nov; 29(47):14881-90. PubMed ID: 19940184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive respiratory plasticity after cervical spinal cord injury in rats: axonal sprouting and rerouting of ventrolateral bulbospinal pathways.
    Darlot F; Cayetanot F; Gauthier P; Matarazzo V; Kastner A
    Exp Neurol; 2012 Jul; 236(1):88-102. PubMed ID: 22542946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts.
    Houle JD
    Exp Neurol; 1991 Jul; 113(1):1-9. PubMed ID: 2044676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining peripheral nerve grafting and matrix modulation to repair the injured rat spinal cord.
    Houle JD; Amin A; Cote MP; Lemay M; Miller K; Sandrow H; Santi L; Shumsky J; Tom V
    J Vis Exp; 2009 Nov; (33):. PubMed ID: 19935638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of preconditioned schwann cells in peripheral nerve grafts after contusion in the adult spinal cord. Improvement of recovery in a rat model.
    Rasouli A; Bhatia N; Suryadevara S; Cahill K; Gupta R
    J Bone Joint Surg Am; 2006 Nov; 88(11):2400-10. PubMed ID: 17079397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons.
    Ye JH; Houle JD
    Exp Neurol; 1997 Jan; 143(1):70-81. PubMed ID: 9000447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.