These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 12044497)
1. Characterization of the proteolytic enzymes in the midgut of the European Cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). Wagner W; Möhrlen F; Schnetter W Insect Biochem Mol Biol; 2002 Jul; 32(7):803-14. PubMed ID: 12044497 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of midgut proteases in Achaea janata and their implications. Budatha M; Meur G; Dutta-Gupta A Biotechnol Lett; 2008 Feb; 30(2):305-10. PubMed ID: 17891457 [TBL] [Abstract][Full Text] [Related]
3. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Loseva O; Ibrahim M; Candas M; Koller CN; Bauer LS; Bulla LA Insect Biochem Mol Biol; 2002 May; 32(5):567-77. PubMed ID: 11891133 [TBL] [Abstract][Full Text] [Related]
4. Characterization of midgut trypsin-like enzymes and three trypsinogen cDNAs from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). Zhu YC; Baker JE Insect Biochem Mol Biol; 1999 Dec; 29(12):1053-63. PubMed ID: 10612040 [TBL] [Abstract][Full Text] [Related]
5. Gypsy moth midgut proteinases: purification and characterization of luminal trypsin, elastase and the brush border membrane leucine aminopeptidase. Valaitis AP Insect Biochem Mol Biol; 1995 Jan; 25(1):139-49. PubMed ID: 7711746 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic distribution of cysteine proteinases in beetles: evidence for an evolutionary shift to an alkaline digestive strategy in Cerambycidae. Johnson KS; Rabosky D Comp Biochem Physiol B Biochem Mol Biol; 2000 Aug; 126(4):609-19. PubMed ID: 11026673 [TBL] [Abstract][Full Text] [Related]
8. A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. Huber M; Roder T; Irmisch S; Riedel A; Gablenz S; Fricke J; Rahfeld P; Reichelt M; Paetz C; Liechti N; Hu L; Bont Z; Meng Y; Huang W; Robert CA; Gershenzon J; Erb M Elife; 2021 Oct; 10():. PubMed ID: 34632981 [TBL] [Abstract][Full Text] [Related]
9. Characteristic Light and Electron Microscopic Features of Adelina melolonthae, a Coccidian Pathogen of the European Cockchafer, Melolontha melolontha (Coleoptera/Scarabaeidae). Yaman M; Radek R Acta Parasitol; 2021 Sep; 66(3):925-931. PubMed ID: 33713276 [TBL] [Abstract][Full Text] [Related]
10. Phenol--another cockchafer attractant shared by Melolontha hippocastani Fabr. and M. melolontha L. Ruther J; Reinecke A; Tolasch T; Hilker M Z Naturforsch C J Biosci; 2002; 57(9-10):910-3. PubMed ID: 12440733 [TBL] [Abstract][Full Text] [Related]
11. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Oppert B; Kramer KJ; Johnson DE; MacIntosh SC; McGaughey WH Biochem Biophys Res Commun; 1994 Feb; 198(3):940-7. PubMed ID: 8117300 [TBL] [Abstract][Full Text] [Related]
12. LC and LD50 values of Bacillus thuringiensis Serovar japonensis strain buibui toxin to Oriental beetle and northern masked chafer larvae (Coleoptera: Scarabaeidae). Mashtoly TA; El-Zemaity Mel-S; Hussien MI; Alm SR J Econ Entomol; 2009 Oct; 102(5):1891-5. PubMed ID: 19886454 [TBL] [Abstract][Full Text] [Related]
13. Effects of a potato cysteine proteinase inhibitor on midgut proteolytic enzyme activity and growth of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae). Fabrick J; Behnke C; Czapla T; Bala K; Rao AG; Kramer KJ; Reeck GR Insect Biochem Mol Biol; 2002 Apr; 32(4):405-15. PubMed ID: 11886775 [TBL] [Abstract][Full Text] [Related]
14. Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning, and expressed sequence tag analysis. Hegedus D; Baldwin D; O'Grady M; Braun L; Gleddie S; Sharpe A; Lydiate D; Erlandson M Arch Insect Biochem Physiol; 2003 May; 53(1):30-47. PubMed ID: 12701112 [TBL] [Abstract][Full Text] [Related]
15. Differences in midgut serine proteinases from larvae of the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Silva CP; Terra WR; Lima RM Arch Insect Biochem Physiol; 2001 May; 47(1):18-28. PubMed ID: 11317332 [TBL] [Abstract][Full Text] [Related]
16. Investigations on bacteria as a potential biological control agent of summer chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). Sezen K; Demir I; Kati H; Demirbag Z J Microbiol; 2005 Oct; 43(5):463-8. PubMed ID: 16273040 [TBL] [Abstract][Full Text] [Related]
17. Host hemolymph proteins and protein digestion in larval Habrobracon hebetor (Hymenoptera: braconidae). Baker JE; Fabrick JA Insect Biochem Mol Biol; 2000 Oct; 30(10):937-46. PubMed ID: 10899460 [TBL] [Abstract][Full Text] [Related]
18. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome. Jiang J; Huang Y; Shu C; Soberón M; Bravo A; Liu C; Song F; Lai J; Zhang J Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389549 [TBL] [Abstract][Full Text] [Related]
19. Carboxy-terminal truncation of oryzacystatin II by oryzacystatin-insensitive insect digestive proteinases. Michaud D; Cantin L; Vrain TC Arch Biochem Biophys; 1995 Oct; 322(2):469-74. PubMed ID: 7574723 [TBL] [Abstract][Full Text] [Related]
20. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae: Lepidoptera). Mohan M; Gujar GT J Invertebr Pathol; 2003 Jan; 82(1):1-11. PubMed ID: 12581714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]