BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12044861)

  • 1. Identification of catalytically important amino acids in human ceruloplasmin by site-directed mutagenesis.
    Brown MA; Stenberg LM; Mauk AG
    FEBS Lett; 2002 Jun; 520(1-3):8-12. PubMed ID: 12044861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of human ceruloplasmin:. production of a proteolytically stable protein and structure-activity relationships of type 1 sites.
    Bielli P; Bellenchi GC; Calabrese L
    J Biol Chem; 2001 Jan; 276(4):2678-85. PubMed ID: 11042176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the iron binding site of Saccharomyces cerevisiae ferroxidase Fet3. An in vivo study.
    Bonaccorsi di Patti MC; Paronetto MP; Dolci V; Felice MR; Lania A; Musci G
    FEBS Lett; 2001 Nov; 508(3):475-8. PubMed ID: 11728475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper proteins and ferroxidases in human plasma and that of wild-type and ceruloplasmin knockout mice.
    Gray LW; Kidane TZ; Nguyen A; Akagi S; Petrasek K; Chu YL; Cabrera A; Kantardjieff K; Mason AZ; Linder MC
    Biochem J; 2009 Apr; 419(1):237-45. PubMed ID: 19076073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres.
    Santambrogio P; Levi S; Cozzi A; Corsi B; Arosio P
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):139-44. PubMed ID: 8660274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3.
    Bonaccorsi di Patti MC; Felice MR; Camuti AP; Lania A; Musci G
    FEBS Lett; 2000 Apr; 472(2-3):283-6. PubMed ID: 10788627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unusual intersubunit ferroxidase center of Listeria innocua Dps is required for hydrogen peroxide detoxification but not for iron uptake. A study with site-specific mutants.
    Ilari A; Latella MC; Ceci P; Ribacchi F; Su M; Giangiacomo L; Stefanini S; Chasteen ND; Chiancone E
    Biochemistry; 2005 Apr; 44(15):5579-87. PubMed ID: 15823016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional relevance of ceruloplasmin mutations in Parkinson's disease.
    Hochstrasser H; Tomiuk J; Walter U; Behnke S; Spiegel J; Krüger R; Becker G; Riess O; Berg D
    FASEB J; 2005 Nov; 19(13):1851-3. PubMed ID: 16150804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of the putative iron ligands in the ferroxidase activity of recombinant human hephaestin.
    Vashchenko G; Macgillivray RT
    J Biol Inorg Chem; 2012 Dec; 17(8):1187-95. PubMed ID: 22961397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of copper incorporation into human ceruloplasmin.
    Hellman NE; Kono S; Mancini GM; Hoogeboom AJ; De Jong GJ; Gitlin JD
    J Biol Chem; 2002 Nov; 277(48):46632-8. PubMed ID: 12351628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces.
    Mukhopadhyay CK; Mazumder B; Lindley PF; Fox PL
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11546-51. PubMed ID: 9326646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific aspartate residues in FET3 control high-affinity iron transport in Saccharomyces cerevisiae.
    Bonaccorsi di Patti MC; Felice MR; De Domenico I; Lania A; Alaleona F; Musci G
    Yeast; 2005 Jul; 22(9):677-87. PubMed ID: 16032772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrous binding to the multicopper oxidases Saccharomyces cerevisiae Fet3p and human ceruloplasmin: contributions to ferroxidase activity.
    Quintanar L; Gebhard M; Wang TP; Kosman DJ; Solomon EI
    J Am Chem Soc; 2004 Jun; 126(21):6579-89. PubMed ID: 15161286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase.
    Blackburn NJ; Ralle M; Hassett R; Kosman DJ
    Biochemistry; 2000 Mar; 39(9):2316-24. PubMed ID: 10694398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of the ferrous iron specificity of the yeast ferroxidase, Fet3p.
    Stoj CS; Augustine AJ; Zeigler L; Solomon EI; Kosman DJ
    Biochemistry; 2006 Oct; 45(42):12741-9. PubMed ID: 17042492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function.
    Stoj C; Kosman DJ
    FEBS Lett; 2003 Nov; 554(3):422-6. PubMed ID: 14623105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p.
    Quintanar L; Stoj C; Wang TP; Kosman DJ; Solomon EI
    Biochemistry; 2005 Apr; 44(16):6081-91. PubMed ID: 15835897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the four alpha-helix bundle iron-loading channel of rat liver ferritin.
    Guo JH; Juan SH; Aust SD
    Arch Biochem Biophys; 1998 Apr; 352(1):71-7. PubMed ID: 9521817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic.
    Yao H; Rui H; Kumar R; Eshelman K; Lovell S; Battaile KP; Im W; Rivera M
    Biochemistry; 2015 Mar; 54(8):1611-27. PubMed ID: 25640193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferroxidase kinetics of human liver apoferritin, recombinant H-chain apoferritin, and site-directed mutants.
    Sun S; Arosio P; Levi S; Chasteen ND
    Biochemistry; 1993 Sep; 32(36):9362-9. PubMed ID: 8369307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.