These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
603 related articles for article (PubMed ID: 12045026)
1. Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests. Wirth C; Schulze ED; Kusznetova V; Milyukova I; Hardes G; Siry M; Schulze B; Vygodskaya NN Tree Physiol; 2002 Jun; 22(8):537-52. PubMed ID: 12045026 [TBL] [Abstract][Full Text] [Related]
2. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Wirth C; Schulze ED; Schulze W; von Stünzner-Karbe D; Ziegler W; Miljukova IM; Sogatchev A; Varlagin AB; Panvyorov M; Grigoriev S; Kusnetzova W; Siry M; Hardes G; Zimmermann R; Vygodskaya NN Oecologia; 1999 Oct; 121(1):66-80. PubMed ID: 28307890 [TBL] [Abstract][Full Text] [Related]
3. Twenty-four years after theYellowstone Fires: Are postfire lodgepole pine stands converging in structure and function? Turner MG; Whitby TG; Tinker DB; Romme WH Ecology; 2016 May; 97(5):1260-73. PubMed ID: 27349102 [TBL] [Abstract][Full Text] [Related]
4. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests. Nelson KN; Turner MG; Romme WH; Tinker DB Ecol Appl; 2016 Dec; 26(8):2422-2436. PubMed ID: 27875007 [TBL] [Abstract][Full Text] [Related]
5. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Turner MG; Braziunas KH; Hansen WD; Harvey BJ Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11319-11328. PubMed ID: 31110003 [TBL] [Abstract][Full Text] [Related]
6. The ratio of NPP to GPP: evidence of change over the course of stand development. Mäkelä A; Valentine HT Tree Physiol; 2001 Sep; 21(14):1015-30. PubMed ID: 11560815 [TBL] [Abstract][Full Text] [Related]
7. Influences of secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park. Sibold JS; Veblen TT; Chipko K; Lawson L; Mathis E; Scott J Ecol Appl; 2007 Sep; 17(6):1638-55. PubMed ID: 17913129 [TBL] [Abstract][Full Text] [Related]
9. Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Xiao CW; Yuste JC; Janssens IA; Roskams P; Nachtergale L; Carrara A; Sanchez BY; Ceulemans R Tree Physiol; 2003 Jun; 23(8):505-16. PubMed ID: 12730042 [TBL] [Abstract][Full Text] [Related]
10. The propagule doesn't fall far from the tree, especially after short-interval, high-severity fire. Gill NS; Hoecker TJ; Turner MG Ecology; 2021 Jan; 102(1):e03194. PubMed ID: 32910502 [TBL] [Abstract][Full Text] [Related]
11. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence. Angstmann JL; Ewers BE; Kwon H Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635 [TBL] [Abstract][Full Text] [Related]
12. The dynamics of the carbon storage and fluxes in Scots pine (Pinus sylvestris) chronosequence. Uri V; Kukumägi M; Aosaar J; Varik M; Becker H; Aun K; Lõhmus K; Soosaar K; Astover A; Uri M; Buht M; Sepaste A; Padari A Sci Total Environ; 2022 Apr; 817():152973. PubMed ID: 35007591 [TBL] [Abstract][Full Text] [Related]
13. Fine root biomass and production in Scots pine stands in relation to stand age. Makkonen K; Helmisaari HS Tree Physiol; 2001 Feb; 21(2-3):193-8. PubMed ID: 11303650 [TBL] [Abstract][Full Text] [Related]
14. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests. Samuelson LJ; Stokes TA; Butnor JR; Johnsen KH; Gonzalez-Benecke CA; Martin TA; Cropper WP; Anderson PH; Ramirez MR; Lewis JC Ecol Appl; 2017 Jan; 27(1):244-259. PubMed ID: 28052499 [TBL] [Abstract][Full Text] [Related]
15. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Pierce JL; Meyer GA; Jull AJ Nature; 2004 Nov; 432(7013):87-90. PubMed ID: 15525985 [TBL] [Abstract][Full Text] [Related]
16. Regeneration of Pinus pinaster Aiton after prescribed fires: Response to burn timing and biogeographical seed provenance across a climatic gradient. Sagra J; Ferrandis P; Plaza-Álvarez PA; Lucas-Borja ME; González-Romero J; Alfaro-Sánchez R; De Las Heras J; Moya D Sci Total Environ; 2018 Oct; 637-638():1550-1558. PubMed ID: 29801248 [TBL] [Abstract][Full Text] [Related]
17. Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production. Vanninen P; Mäkelä A Tree Physiol; 2005 Jan; 25(1):17-30. PubMed ID: 15519982 [TBL] [Abstract][Full Text] [Related]
18. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain. Carlo NJ; Renninger HJ; Clark KL; Schäfer KV Tree Physiol; 2016 Aug; 36(8):967-82. PubMed ID: 27259637 [TBL] [Abstract][Full Text] [Related]
19. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence. Das Gupta S; Mackenzie MD PLoS One; 2016; 11(11):e0165602. PubMed ID: 27832089 [TBL] [Abstract][Full Text] [Related]
20. Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles. Luiro J; Kukkola M; Saarsalmi A; Tamminen P; Helmisaari HS Tree Physiol; 2010 Jan; 30(1):78-88. PubMed ID: 19934174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]