BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 12045381)

  • 1. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure.
    Sorescu D; Griendling KK
    Congest Heart Fail; 2002; 8(3):132-40. PubMed ID: 12045381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress and heart failure.
    Byrne JA; Grieve DJ; Cave AC; Shah AM
    Arch Mal Coeur Vaiss; 2003 Mar; 96(3):214-21. PubMed ID: 12722552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
    Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U
    Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II.
    Kimura S; Zhang GX; Nishiyama A; Shokoji T; Yao L; Fan YY; Rahman M; Suzuki T; Maeta H; Abe Y
    Hypertension; 2005 May; 45(5):860-6. PubMed ID: 15824196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase and cardiac failure.
    Kuroda J; Sadoshima J
    J Cardiovasc Transl Res; 2010 Aug; 3(4):314-20. PubMed ID: 20559780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and heart failure.
    Tsutsui H; Kinugawa S; Matsushima S
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2181-90. PubMed ID: 21949114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury.
    Shi Y; Niculescu R; Wang D; Patel S; Davenpeck KL; Zalewski A
    Arterioscler Thromb Vasc Biol; 2001 May; 21(5):739-45. PubMed ID: 11348868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of reactive oxygen species in myocardial remodeling.
    Zhang M; Shah AM
    Curr Heart Fail Rep; 2007 Mar; 4(1):26-30. PubMed ID: 17386182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species.
    Redout EM; Wagner MJ; Zuidwijk MJ; Boer C; Musters RJ; van Hardeveld C; Paulus WJ; Simonides WS
    Cardiovasc Res; 2007 Sep; 75(4):770-81. PubMed ID: 17582388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium Signaling and Reactive Oxygen Species in Mitochondria.
    Bertero E; Maack C
    Circ Res; 2018 May; 122(10):1460-1478. PubMed ID: 29748369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic strain induces reactive oxygen species production via an endothelial NAD(P)H oxidase.
    Matsushita H; Lee KH; Tsao PS
    J Cell Biochem Suppl; 2001; Suppl 36():99-106. PubMed ID: 11455575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of NADPH oxidases in cardiac remodelling and heart failure.
    Sirker A; Zhang M; Murdoch C; Shah AM
    Am J Nephrol; 2007; 27(6):649-60. PubMed ID: 17901689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of oxidative stress in heart failure].
    Gál R; Halmosi R
    Orv Hetil; 2015 Nov; 156(47):1916-20. PubMed ID: 26568107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of different Nox homologues to cardiac remodeling in two-kidney two-clip renovascular hypertensive rats: effect of valsartan.
    Wang P; Tang F; Li R; Zhang H; Chen S; Liu P; Huang H
    Pharmacol Res; 2007 May; 55(5):408-17. PubMed ID: 17324585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury.
    Li WG; Miller FJ; Zhang HJ; Spitz DR; Oberley LW; Weintraub NL
    J Biol Chem; 2001 Aug; 276(31):29251-6. PubMed ID: 11358965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium.
    Ide T; Tsutsui H; Kinugawa S; Utsumi H; Kang D; Hattori N; Uchida K; Arimura Ki; Egashira K; Takeshita A
    Circ Res; 1999 Aug; 85(4):357-63. PubMed ID: 10455064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD(P)H oxidase activity in cultured human podocytes: effects of adenosine triphosphate.
    Greiber S; Münzel T; Kästner S; Müller B; Schollmeyer P; Pavenstädt H
    Kidney Int; 1998 Mar; 53(3):654-63. PubMed ID: 9507211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase.
    Mohazzab-H KM; Kaminski PM; Wolin MS
    Circulation; 1997 Jul; 96(2):614-20. PubMed ID: 9244234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning.
    Maack C; Dabew ER; Hohl M; Schäfers HJ; Böhm M
    Circ Res; 2009 Oct; 105(8):811-7. PubMed ID: 19729596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.