These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12046301)

  • 1. Environmental benefits of underground coal gasification.
    Liu SQ; Liu JH; Yu L
    J Environ Sci (China); 2002 Apr; 14(2):284-8. PubMed ID: 12046301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide sorption capacities of coal gasification residues.
    Kempka T; Fernández-Steeger T; Li DY; Schulten M; Schlüter R; Krooss BM
    Environ Sci Technol; 2011 Feb; 45(4):1719-23. PubMed ID: 21210659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.
    Liu J; Jiang X; Zhou L; Wang H; Han X
    J Hazard Mater; 2009 Aug; 167(1-3):817-23. PubMed ID: 19249155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination and evaluation of hexavalent chromium in power plant coal combustion by-products and cost-effective environmental remediation solutions using acid mine drainage.
    Kingston HM; Cain R; Huo D; Rahman GM
    J Environ Monit; 2005 Sep; 7(9):899-905. PubMed ID: 16121270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of groundwater quality impacts due to use of coal combustion byproducts to control subsidence from underground mines.
    Singh G; Paul BC
    Environ Int; 2001 Jun; 26(7-8):567-71. PubMed ID: 11485225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIFAC ash--strategies for management.
    Anthony EJ; Berry EE; Blondin J; Bulewicz EM; Burwell S
    Waste Manag; 2005; 25(3):265-79. PubMed ID: 15823742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of mercury in ash and soil samples by oxygen flask combustion method--cold vapor atomic fluorescence spectrometry (CVAFS).
    Geng W; Nakajima T; Takanashi H; Ohki A
    J Hazard Mater; 2008 Jun; 154(1-3):325-30. PubMed ID: 18023528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.
    Zhang Y; Zheng Y; Yang M; Song Y
    Bioresour Technol; 2016 Jan; 200():789-94. PubMed ID: 26580896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation into the impact of CO2 co-feed on pyrolysis and gasification.
    Kwon E; Kim S
    Chemosphere; 2010 Aug; 80(8):957-63. PubMed ID: 20546843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance.
    Moustakas K; Xydis G; Malamis S; Haralambous KJ; Loizidou M
    J Hazard Mater; 2008 Mar; 151(2-3):473-80. PubMed ID: 17624665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.
    Liu W; Hou H; Zhang C; Zhang D
    Waste Manag Res; 2009 May; 27(3):258-66. PubMed ID: 19423575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.
    Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(5):645-55. PubMed ID: 16730435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental and economic performance of plasma gasification in Enhanced Landfill Mining.
    Danthurebandara M; Van Passel S; Vanderreydt I; Van Acker K
    Waste Manag; 2015 Nov; 45():458-67. PubMed ID: 26119012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW).
    Jung CH; Matsuto T; Tanaka N
    Waste Manag; 2005; 25(3):301-10. PubMed ID: 15823745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrohydrolytic determination of fluorine in coal: a chemometric approach.
    Sredović I; Rajaković Lj
    J Hazard Mater; 2010 May; 177(1-3):445-51. PubMed ID: 20060216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-stage system to remove mercury and dioxins in flue gases.
    Hylander LD; Sollenberg H; Westas H
    Sci Total Environ; 2003 Mar; 304(1-3):137-44. PubMed ID: 12663178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash.
    Ecke H
    Waste Manag; 2003; 23(7):631-40. PubMed ID: 12957158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation of Cr and its leachability in coal by-products from spanish coal combustion plants.
    López-Antón MA; Díaz-Somoano M; Cuesta AF; Riesco AR; Martínez-Tarazona MR
    J Environ Monit; 2008 Jun; 10(6):778-81. PubMed ID: 18528547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greening coal: breakthroughs and challenges in carbon capture and storage.
    Stauffer PH; Keating GN; Middleton RS; Viswanathan HS; Berchtold KA; Singh RP; Pawar RJ; Mancino A
    Environ Sci Technol; 2011 Oct; 45(20):8597-604. PubMed ID: 21905694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.