These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12046696)

  • 1. FEM analysis of predicting electrode-myocardium contact from RF cardiac catheter ablation system impedance.
    Cao H; Speidel MA; Tsai JZ; Van Lysel MS; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):520-6. PubMed ID: 12046696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.
    Cao H; Tungjitkusolmun S; Choy YB; Tsai JZ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 Mar; 49(3):247-53. PubMed ID: 11876289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FEM analysis of RF breast ablation: multiprobe versus cool-tip electrode.
    Quaranta V; Manenti G; Bolacchi F; Cossu E; Pistolese CA; Buonomo OC; Carotenuto L; Piconi C; Simonetti G
    Anticancer Res; 2007; 27(2):775-84. PubMed ID: 17465202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new catheter design using needle electrode for subendocardial RF ablation of ventricular muscles: finite element analysis and in vitro experiments.
    Woo EJ; Tungjitkusolmun S; Cao H; Tsai JZ; Webster JG; Vorperian VR; Will JA
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):23-31. PubMed ID: 10646276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of apparent resistance of four-electrode probes on insertion depth.
    Tsai JZ; Cao H; Tungjitkusolmun S; Woo EJ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):41-8. PubMed ID: 10646278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature measurement within myocardium during in vitro RF catheter ablation.
    Cao H; Vorperian VR; Tsai JZ; Tungjitkusolmun S; Woo EJ; Webster JG
    IEEE Trans Biomed Eng; 2000 Nov; 47(11):1518-24. PubMed ID: 11077746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation.
    Tungjitkusolmun S; Woo EJ; Cao H; Tsai JZ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):32-40. PubMed ID: 10646277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional finite-element analyses for radio-frequency hepatic tumor ablation.
    Tungjitkusolmun S; Staelin ST; Haemmerich D; Tsai JZ; Webster JG; Lee FT; Mahvi DM; Vorperian VR
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):3-9. PubMed ID: 11797653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computer simulation of radio-frequency ablation of the endocardium.
    Labonté S
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):883-90. PubMed ID: 7959815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling bipolar phase-shifted multielectrode catheter ablation.
    Tungjitkusolmun S; Haemmerich D; Cao H; Tsai JZ; Choy YB; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):10-7. PubMed ID: 11794767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical and experimental analysis of radiofrequency ablation with a multielectrode, phased, duty-cycled system.
    Lau M; Hu B; Werneth R; Sherman M; Oral H; Morady F; Krysl P
    Pacing Clin Electrophysiol; 2010 Sep; 33(9):1089-100. PubMed ID: 20546146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncontact radio-frequency ablation for obtaining deeper lesions.
    Zhang J; Tsai JZ; Cao H; Chen Y; Will JA; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):218-23. PubMed ID: 12665035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: a computational modeling study.
    Schutt D; Berjano EJ; Haemmerich D
    Int J Hyperthermia; 2009 Mar; 25(2):99-107. PubMed ID: 19337910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of myocardial lesion size during in vitro radio frequency catheter ablation.
    He DS; Bosnos M; Mays MZ; Marcus F
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):768-76. PubMed ID: 12814243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large radiofrequency ablation lesions can be created with a retractable infusion-needle catheter.
    Sapp JL; Cooper JM; Zei P; Stevenson WG
    J Cardiovasc Electrophysiol; 2006 Jun; 17(6):657-61. PubMed ID: 16836718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-element analysis of hepatic multiple probe radio-frequency ablation.
    Haemmerich D; Tungjitkusolmun S; Staelin ST; Lee FT; Mahvi DM; Webster JG
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):836-42. PubMed ID: 12148822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of electrical coupling between cardiac ablation catheters and tissue.
    Deno DC; Sih HJ; Miller SP; Teplitsky LR; Kuenzi R
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):765-74. PubMed ID: 24235298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance measurement to assess epicardial fat prior to RF intraoperative cardiac ablation: a feasibility study using a computer model.
    González-Suárez A; Hornero F; Berjano EJ
    Physiol Meas; 2010 Nov; 31(11):N95-104. PubMed ID: 20952818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.