These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 12046698)

  • 1. Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model.
    Huizenga HM; de Munck JC; Waldorp LJ; Grasman RP
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):533-9. PubMed ID: 12046698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal noise covariance estimation from limited empirical magnetoencephalographic data.
    Jun SC; Plis SM; Ranken DM; Schmidt DM
    Phys Med Biol; 2006 Nov; 51(21):5549-64. PubMed ID: 17047269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A resampling method for estimating the signal subspace of spatio-temporal EEG/MEG data.
    Maris E
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):935-49. PubMed ID: 12892321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimated generalized least squares electromagnetic source analysis based on a parametric noise covariance model.
    Waldorp LJ; Huizenga HM; Dolan CV; Molenaar PC
    IEEE Trans Biomed Eng; 2001 Jun; 48(6):737-41. PubMed ID: 11396604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spatiotemporal MEG covariance matrix modeled as a sum of Kronecker products.
    Bijma F; de Munck JC; Heethaar RM
    Neuroimage; 2005 Aug; 27(2):402-15. PubMed ID: 16019231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing between moving and stationary sources using EEG/MEG measurements with an application to epilepsy.
    Yetik IS; Nehorai A; Lewine JD; Muravchik CH
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):471-9. PubMed ID: 15759577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.
    Jun SC; George JS; Paré-Blagoev J; Plis SM; Ranken DM; Schmidt DM; Wood CC
    Neuroimage; 2005 Oct; 28(1):84-98. PubMed ID: 16023866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum-likelihood estimation of low-rank signals for multiepoch MEG/EEG analysis.
    Baryshnikov BV; Van Veen BD; Wakai RT
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1981-93. PubMed ID: 15536900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data.
    Zumer JM; Attias HT; Sekihara K; Nagarajan SS
    Neuroimage; 2007 Aug; 37(1):102-15. PubMed ID: 17574444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony.
    David O; Garnero L; Cosmelli D; Varela FJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):975-87. PubMed ID: 12214887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of mutual information on independent component analysis in EEG/MEG analysis: a simulation study.
    Neumann A; Grosse-Wentrup M; Buss M; Gramann K
    Int J Neurosci; 2008 Nov; 118(11):1534-46. PubMed ID: 18853332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling spatiotemporal covariance for magnetoencephalography or electroencephalography source analysis.
    Plis SM; George JS; Jun SC; Paré-Blagoev J; Ranken DM; Wood CC; Schmidt DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011928. PubMed ID: 17358205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A space-frequency analysis of MEG background processes.
    Bijma F; de Munck JC
    Neuroimage; 2008 Nov; 43(3):478-88. PubMed ID: 18773964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coupled dipole model: an integrated model for multiple MEG/EEG data sets.
    Bijma F; de Munck JC; Böcker KB; Huizenga HM; Heethaar RM
    Neuroimage; 2004 Nov; 23(3):890-904. PubMed ID: 15528089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three domain covariance framework for EEG/MEG data.
    Roś BP; Bijma F; de Gunst MC; de Munck JC
    Neuroimage; 2015 Oct; 119():305-15. PubMed ID: 26072253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging.
    Ramírez RR; Kopell BH; Butson CR; Hiner BC; Baillet S
    Neuroimage; 2011 May; 56(1):78-92. PubMed ID: 21315157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis.
    Jun SC; George JS; Plis SM; Ranken DM; Schmidt DM; Wood CC
    Phys Med Biol; 2006 May; 51(10):2395-414. PubMed ID: 16675860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates.
    Lin FH; Witzel T; Ahlfors SP; Stufflebeam SM; Belliveau JW; Hämäläinen MS
    Neuroimage; 2006 May; 31(1):160-71. PubMed ID: 16520063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model selection in spatio-temporal electromagnetic source analysis.
    Waldorp LJ; Huizenga HM; Nehorai A; Grasman RP; Molenaar PC
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):414-20. PubMed ID: 15759571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.