These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 12047564)

  • 21. Constant bright light (LL) during lactation in rats prevents arrhythmicity due to LL.
    Cambras T; Vilaplana J; Torres A; Canal MM; Casamitjana N; Campuzano A; Díez-Noguera A
    Physiol Behav; 1998 Mar; 63(5):875-82. PubMed ID: 9618011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid reentrainment of the circadian clock itself, but not the measurable activity rhythms to a new light-dark cycle in the rat.
    Takamure M; Murakami N; Takahashi K; Kuroda H; Etoh T
    Physiol Behav; 1991 Aug; 50(2):443-9. PubMed ID: 1745692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein malnutrition and aging affects entraining and intensity of locomotor activity and body temperature circadian rhythms in rats.
    Durán P; Miranda-Anaya M; Mondragón-García I; Cintra L
    Nutr Neurosci; 2008 Dec; 11(6):263-8. PubMed ID: 19000379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultradian and circadian CO2 emission variations in nocturnal and diurnal animals exposed to a light stimulus.
    Stupfel M; Gourlet V; Perramon A; Lemercerre C
    Comp Biochem Physiol A Comp Physiol; 1989; 94(3):415-25. PubMed ID: 2574093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circadian rhythms in the rat: constant darkness, entrainment to T cycles and to skeleton photoperiods.
    Stephan FK
    Physiol Behav; 1983 Mar; 30(3):451-62. PubMed ID: 6683413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible suppression of circadian-driven locomotor rhythms in mice using a gradual fragmentation of the day-night cycle.
    Richardson MES; Browne CA; Mazariegos CIH
    Sci Rep; 2023 Sep; 13(1):14423. PubMed ID: 37660212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypoprolactinemic rats under conditions of constant darkness or constant light. Effects on the sleep-wake cycle, cerebral temperature and sulfatoxymelatonin levels.
    Lobo LL; Claustrat B; Debilly G; Paut-Pagano L; Jouvet M; Valatx JL
    Brain Res; 1999 Jul; 835(2):282-9. PubMed ID: 10415384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistent T lymphocyte rhythms despite suppressed circadian clock outputs in rats.
    Deprés-Brummer P; Bourin P; Pages N; Metzger G; Lévi F
    Am J Physiol; 1997 Dec; 273(6):R1891-9. PubMed ID: 9435642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida).
    Koilraj AJ; Sharma VK; Marimuthu G; Chandrashekaran MK
    Chronobiol Int; 2000 Nov; 17(6):757-65. PubMed ID: 11128292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circadian rhythms on skin function of hairless rats: light and thermic influences.
    Flo A; Díez-Noguera A; Calpena AC; Cambras T
    Exp Dermatol; 2014 Mar; 23(3):214-6. PubMed ID: 24499392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Restricted feeding entrains circadian wheel-running activity rhythms of the kowari.
    Kennedy GA; Coleman GJ; Armstrong SM
    Am J Physiol; 1991 Oct; 261(4 Pt 2):R819-27. PubMed ID: 1928428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circadian variations in trichloroethylene toxicity under a 12:12 hr light-dark cycle and their alterations under constant darkness in rats.
    Motohashi Y; Kawakami T; Miyazaki Y; Takano T; Ekataksin W
    Toxicol Appl Pharmacol; 1990 Jun; 104(1):139-48. PubMed ID: 2360203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of light in the initiation of circadian activity rhythms of adult Drosophila melanogaster.
    Power J; Ringo J; Dowse H
    J Neurogenet; 1995 Feb; 9(4):227-38. PubMed ID: 7760213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian rhythms of locomotor activity in the goldfish Carassius auratus.
    Iigo M; Tabata M
    Physiol Behav; 1996 Sep; 60(3):775-81. PubMed ID: 8873250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats.
    Jasper MS; Engeland WC
    Neuroendocrinology; 1994 Feb; 59(2):97-109. PubMed ID: 8127410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of robust circadian clocks in Drosophila melanogaster populations reared in constant dark for over 330 generations.
    Shindey R; Varma V; Nikhil KL; Sharma VK
    Naturwissenschaften; 2016 Oct; 103(9-10):74. PubMed ID: 27585442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two meals promote entrainment of rat food-anticipatory and rest-activity rhythms.
    White W; Timberlake W
    Physiol Behav; 1995 Jun; 57(6):1067-74. PubMed ID: 7652026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic administration of imipramine and lithium changes the phase-angle relationship between the activity and core body temperature circadian rhythms in rats.
    Nagayama H
    Chronobiol Int; 1996 Oct; 13(4):251-9. PubMed ID: 8889249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of synchronization of primate circadian rhythms by light and food.
    Sulzman FM; Fuller CA; Moore-Ede MC
    Am J Physiol; 1978 Mar; 234(3):R130-5. PubMed ID: 415621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian rhythms of crawling and swimming in the nudibranch mollusc Melibe leonina.
    Newcomb JM; Kirouac LE; Naimie AA; Bixby KA; Lee C; Malanga S; Raubach M; Watson WH
    Biol Bull; 2014 Dec; 227(3):263-73. PubMed ID: 25572214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.