These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12048028)

  • 1. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II.
    Zamboni DS; Mortara RA; Freymuller E; Rabinovitch M
    Microbes Infect; 2002 May; 4(6):591-8. PubMed ID: 12048028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbicidal property of B1 cell derived mononuclear phagocyte.
    Popi AF; Zamboni DS; Mortara RA; Mariano M
    Immunobiology; 2009; 214(8):664-73. PubMed ID: 19321225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4.
    Honstettre A; Ghigo E; Moynault A; Capo C; Toman R; Akira S; Takeuchi O; Lepidi H; Raoult D; Mege JL
    J Immunol; 2004 Mar; 172(6):3695-703. PubMed ID: 15004173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuated Coxiella burnetii phase II causes a febrile response in gamma interferon knockout and Toll-like receptor 2 knockout mice and protects against reinfection.
    Ochoa-Repáraz J; Sentissi J; Trunkle T; Riccardi C; Pascual DW
    Infect Immun; 2007 Dec; 75(12):5845-58. PubMed ID: 17893129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii phase II through down-modulation of nitric oxide production.
    Zamboni DS; Rabinovitch M
    Infect Immun; 2004 Apr; 72(4):2075-80. PubMed ID: 15039329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vanin-1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection.
    Meghari S; Berruyer C; Lepidi H; Galland F; Naquet P; Mege JL
    Eur J Immunol; 2007 Jan; 37(1):24-32. PubMed ID: 17163446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infection of Vero cells with Coxiella burnetii phase II: relative intracellular bacterial load and distribution estimated by confocal laser scanning microscopy and morphometry.
    Zamboni DS; Mortara RA; Rabinovitch M
    J Microbiol Methods; 2001 Jan; 43(3):223-32. PubMed ID: 11118656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections.
    Brennan RE; Russell K; Zhang G; Samuel JE
    Infect Immun; 2004 Nov; 72(11):6666-75. PubMed ID: 15501800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infection of human monocyte-derived macrophages with Coxiella burnetii.
    Shannon JG; Heinzen RA
    Methods Mol Biol; 2008; 431():189-200. PubMed ID: 18287757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of chimeric phagosomes that shelter Mycobacterium avium and Coxiella burnetii (phase II) in doubly infected mouse macrophages: an ultrastructural study.
    de Chastellier C; Thibon M; Rabinovitch M
    Eur J Cell Biol; 1999 Aug; 78(8):580-92. PubMed ID: 10494865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of natural resistance of mouse macrophages to Coxiella burnetii infection in vitro: macrophages from restrictive strains control parasitophorous vacuole maturation.
    Zamboni DS
    Infect Immun; 2004 Apr; 72(4):2395-9. PubMed ID: 15039367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of B cells in host defense against primary Coxiella burnetii infection.
    Schoenlaub L; Elliott A; Freches D; Mitchell WJ; Zhang G
    Infect Immun; 2015 Dec; 83(12):4826-36. PubMed ID: 26438792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection.
    Elliott A; Peng Y; Zhang G
    Infect Immun; 2013 Dec; 81(12):4604-14. PubMed ID: 24082077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages.
    Zamboni DS; Rabinovitch M
    Infect Immun; 2003 Mar; 71(3):1225-33. PubMed ID: 12595436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coxiella burnetii Lipopolysaccharide: What Do We Know?
    Abnave P; Muracciole X; Ghigo E
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29168790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of tumor necrosis factor alpha in murine macrophages with various strains of Coxiella burnetii and their lipopolysaccharides.
    Kubes M; Kuzmová Z; Gajdosová E; Ihnatko R; Mucha V; Toman R; Kovácová E
    Acta Virol; 2006; 50(2):93-9. PubMed ID: 16808326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Murine Alveolar Macrophages Are Highly Susceptible to Replication of Coxiella burnetii Phase II In Vitro.
    Fernandes TD; Cunha LD; Ribeiro JM; Massis LM; Lima-Junior DS; Newton HJ; Zamboni DS
    Infect Immun; 2016 Sep; 84(9):2439-48. PubMed ID: 27297388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coxiella burnetii infection in C57BL/6 mice aged 1 or 14 months.
    Leone M; Bechah Y; Meghari S; Lepidi H; Capo C; Raoult D; Mege JL
    FEMS Immunol Med Microbiol; 2007 Aug; 50(3):396-400. PubMed ID: 17555529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role for the CD28 molecule in the control of Coxiella burnetii infection.
    Honstettre A; Meghari S; Nunès JA; Lepidi H; Raoult D; Olive D; Mege JL
    Infect Immun; 2006 Mar; 74(3):1800-8. PubMed ID: 16495554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics.
    Berón W; Gutierrez MG; Rabinovitch M; Colombo MI
    Infect Immun; 2002 Oct; 70(10):5816-21. PubMed ID: 12228312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.