BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12048806)

  • 1. [Recovery process of nitric acid, copper and nickel in deplating wastewater].
    Liu Z; Wang P; Jiang H; Chen Z
    Huan Jing Ke Xue; 2002 Mar; 23(2):113-6. PubMed ID: 12048806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant.
    Muthuraman G; Teng TT; Leh CP; Norli I
    J Hazard Mater; 2009 Apr; 163(1):363-9. PubMed ID: 18782652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric acid recycling and copper nitrate recovery from effluent.
    Jô LF; Marcus R; Marcelin O
    Environ Sci Pollut Res Int; 2014; 21(11):6975-81. PubMed ID: 24627202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Recovery of copper from sewage sludge by bioleaching-solvent extraction-electrodeposition process].
    Chen HP; Zhou LX; Wang SM; Liang JR
    Huan Jing Ke Xue; 2009 Nov; 30(11):3364-70. PubMed ID: 20063755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry.
    Silva EL; Roldan Pdos S; Giné MF
    J Hazard Mater; 2009 Nov; 171(1-3):1133-8. PubMed ID: 19646812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of nitric acid from waste etching solution using solvent extraction.
    Shin CH; Kim JY; Kim JY; Kim HS; Lee HS; Mohapatra D; Ahn JW; Ahn JG; Bae W
    J Hazard Mater; 2009 Apr; 163(2-3):729-34. PubMed ID: 18755545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent extraction applied to the recovery of heavy metals from galvanic sludge.
    Silva JE; Paiva AP; Soares D; Labrincha A; Castro F
    J Hazard Mater; 2005 Apr; 120(1-3):113-8. PubMed ID: 15811671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique.
    Barik SP; Park KH; Nam CW
    J Environ Manage; 2014 Dec; 146():22-28. PubMed ID: 25156262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential recovery of copper and nickel from wastewater without net energy input.
    Cai WF; Fang XW; Xu MX; Liu XH; Wang YH
    Water Sci Technol; 2015; 71(5):754-60. PubMed ID: 25768223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of nickel and copper ions from single metal aqueous solutions by fungi.
    Beebi SK; Sridevi V; Lakshmi MV; Elizabeth KM; Chaitanya KV
    J Environ Sci Eng; 2009 Jan; 51(1):1-6. PubMed ID: 21114146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41.
    Algarra M; Jiménez MV; Rodríguez-Castellón E; Jiménez-López A; Jiménez-Jiménez J
    Chemosphere; 2005 May; 59(6):779-86. PubMed ID: 15811406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].
    Wang M; Cao HB; Zhang Y
    Huan Jing Ke Xue; 2011 Feb; 32(2):596-602. PubMed ID: 21528589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.
    Rabah MA
    Waste Manag; 2004; 24(2):119-26. PubMed ID: 14761750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture.
    Vellaichamy S; Palanivelu K
    J Hazard Mater; 2011 Jan; 185(2-3):1131-9. PubMed ID: 21041024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental features of copper ion precipitation using sulfide as a precipitant in a wastewater system.
    Choi JY; Kim DS; Lim JY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(6):1155-72. PubMed ID: 16760092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes.
    Villaescusa I; Fiol N; Martínez M; Miralles N; Poch J; Serarols J
    Water Res; 2004 Feb; 38(4):992-1002. PubMed ID: 14769419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process.
    Molinari R; Poerio T; Argurio P
    Chemosphere; 2008 Jan; 70(3):341-8. PubMed ID: 17825876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and preconcentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination.
    Dadfarnia S; Shakerian F; Shabani AM
    Talanta; 2013 Mar; 106():150-4. PubMed ID: 23598108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.