These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12049356)

  • 1. Dependence of the wave-front aberration on the radius of the reference sphere.
    Miks A
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1187-90. PubMed ID: 12049356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the wave aberration of an axial bundle of rays.
    Novák J; Mikš A
    J Opt Soc Am A Opt Image Sci Vis; 2024 Jan; 41(1):54-58. PubMed ID: 38175130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave front equation, caustics, and wave aberration function of simple lenses and mirrors.
    Kassim AM; Shealy DL
    Appl Opt; 1988 Feb; 27(3):516-22. PubMed ID: 20523633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of laser sources with high-quality wave fronts.
    Cochran ER
    Appl Opt; 1991 Dec; 30(34):5037-48. PubMed ID: 20717318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor.
    Mansell JD; Hennawi J; Gustafson EK; Fejer MM; Byer RL; Clubley D; Yoshida S; Reitze DH
    Appl Opt; 2001 Jan; 40(3):366-74. PubMed ID: 18357010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration.
    Choi IW; Lee JU; Nam CH
    Appl Opt; 1997 Mar; 36(7):1457-66. PubMed ID: 18250822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of wave-front aberration and corneal Asphericity after SMILE and LASEK for myopia: a short and long term study.
    Yu M; Chen M; Liu W; Dai J
    BMC Ophthalmol; 2019 Mar; 19(1):80. PubMed ID: 30894159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choice of reference axis in ocular wave-front aberration measurement.
    Cui C; Lakshminarayanan V
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2488-96. PubMed ID: 9729860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave-front aberration measurements on GRIN-rod lenses.
    Cline TW; Jander RB
    Appl Opt; 1982 Mar; 21(6):1035-41. PubMed ID: 20389800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor.
    Salmon TO; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2457-65. PubMed ID: 9729857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave-front measurement errors from restricted concentric subdomains.
    Goldberg KA; Geary K
    J Opt Soc Am A Opt Image Sci Vis; 2001 Sep; 18(9):2146-52. PubMed ID: 11551047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spherical aberration and other higher-order aberrations in the human eye: from summary wave-front analysis data to optical variables relevant to visual perception.
    Jansonius NM
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):941-50. PubMed ID: 20448758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coating-induced wave-front aberrations: on-axis astigmatism and chromatic aberration in all-reflecting systems.
    Reiley DJ; Chipman RA
    Appl Opt; 1994 Apr; 33(10):2002-12. PubMed ID: 20885536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grazing incidence interferometry: the use of the Linnik interferometer for testing image-forming reflection systems.
    Speer RJ; Chrisp M; Turner D; Mrowka S; Tregidgo K
    Appl Opt; 1979 Jun; 18(12):2003-12. PubMed ID: 20212593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Nd:YAG laser posterior capsulotomy on ocular wave front aberrations.
    Levy J; Lifshitz T; Klemperer I; Knyazer B; Ashkenazy Z; Kratz A; Belfair N
    Can J Ophthalmol; 2009 Oct; 44(5):529-33. PubMed ID: 19789587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical design of zero-power Hubble Space Telescope wave-front correctors for null testing.
    Hannan PG; Davila P; Wood HJ
    Appl Opt; 1993 Apr; 32(10):1782-5. PubMed ID: 20820311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time optical aberration correction with a ferroelectric liquid-crystal spatial light modulator.
    Birch PM; Gourlay J; Love GD; Purvis A
    Appl Opt; 1998 Apr; 37(11):2164-9. PubMed ID: 18273139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive wave-front correction by means of all-optical feedback interferometry.
    Shirai T; Barnes TH; Haskell TG
    Opt Lett; 2000 Jun; 25(11):773-5. PubMed ID: 18064179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging characteristics of Zernike and annular polynomial aberrations.
    Mahajan VN; Díaz JA
    Appl Opt; 2013 Apr; 52(10):2062-74. PubMed ID: 23545961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.