These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12049845)

  • 1. Reductive activation of terpenylnaphthoquinones.
    Alegria AE; Cordones E; Santiago G; Marcano Y; Sanchez S; Gordaliza M; Martín-Martín ML
    Toxicology; 2002 Jun; 175(1-3):167-75. PubMed ID: 12049845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive activation of benzazolo[3,2-a]-quinolinium chlorides.
    Alegría AE; Cox O; Santiago V; Colón M; Reyes Z; Zayas L; Rivera LA; Dumas JA
    Free Radic Biol Med; 1993 Jul; 15(1):49-56. PubMed ID: 8395453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine oxidase-catalyzed reduction of estrogen quinones to semiquinones and hydroquinones.
    Roy D; Kalyanaraman B; Liehr JG
    Biochem Pharmacol; 1991 Sep; 42(8):1627-31. PubMed ID: 1656992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sonochemistry of quinones in argon-saturated aqueous solutions: enhanced cytochrome c reduction.
    Lawson RC; Ferrer A; Flores W; Alegría AE
    Chem Res Toxicol; 1999 Sep; 12(9):850-4. PubMed ID: 10490507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductive activation of potential antitumor bis(aziridinyl)benzoquinones by xanthine oxidase: competition between oxygen reduction and quinone reduction.
    Lusthof KJ; Richter W; de Mol NJ; Janssen LH; Verboom W; Reinhoudt DN
    Arch Biochem Biophys; 1990 Feb; 277(1):137-42. PubMed ID: 2154955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline-earth cations enhance ortho-quinone-catalyzed ascorbate oxidation.
    Alegría AE; Sanchez-Cruz P; Rivas L
    Free Radic Biol Med; 2004 Nov; 37(10):1631-9. PubMed ID: 15477014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinone-enhanced reduction of nitric oxide by xanthine/xanthine oxidase.
    Sanchez-Cruz P; Alegría AE
    Chem Res Toxicol; 2009 May; 22(5):818-23. PubMed ID: 19301825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihydrolipoamide-mediated redox cycling of quinones.
    Anusevicius ZJ; Cènas NK
    Arch Biochem Biophys; 1993 May; 302(2):420-4. PubMed ID: 8387746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemistry of antitumor quinones in argon-saturated aqueous solutions: enhanced ferricytochrome c reduction.
    Lopez-Colón D; Alegría AE
    Ultrason Sonochem; 2004 Jul; 11(5):311-6. PubMed ID: 15157861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox cycling of polycyclic aromatic hydrocarbon o-quinones: reversal of superoxide dismutase inhibition by ascorbate.
    Jarabak R; Harvey RG; Jarabak J
    Arch Biochem Biophys; 1997 Mar; 339(1):92-8. PubMed ID: 9056238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide-induced bleaching of streptocyanine dyes: Application to assay the enzymatic activity of superoxide dismutases.
    Vinatier V; Guieu V; Madaule Y; Maturano M; Payrastre C; Hoffmann P
    Anal Biochem; 2010 Oct; 405(2):255-9. PubMed ID: 20570646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox cycling of quinones reduced by ascorbic acid.
    Njus D; Asmaro K; Li G; Palomino E
    Chem Biol Interact; 2023 Mar; 373():110397. PubMed ID: 36764370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of superoxide and ascorbyl radicals in the circulation of animals under oxidative stress.
    Koyama K; Takatsuki K; Inoue M
    Arch Biochem Biophys; 1994 Mar; 309(2):323-8. PubMed ID: 8135544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure variation of enzymatic reaction rates: IV. Xanthine oxidase and superoxide dismutase.
    Morild E; Olmheim JE
    Physiol Chem Phys; 1981; 13(6):483-91. PubMed ID: 6287508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for redox cycling of lawsone (2-hydroxy-1,4-naphthoquinone) in the presence of the hypoxanthine/xanthine oxidase system.
    Osman AM; van Noort PC
    J Appl Toxicol; 2003; 23(4):209-12. PubMed ID: 12884402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues.
    Li H; Samouilov A; Liu X; Zweier JL
    Biochemistry; 2003 Feb; 42(4):1150-9. PubMed ID: 12549937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox cycling of polycyclic aromatic hydrocarbon o-quinones: metal ion-catalyzed oxidation of catechols bypasses inhibition by superoxide dismutase.
    Jarabak R; Harvey RG; Jarabak J
    Chem Biol Interact; 1998 Oct; 115(3):201-13. PubMed ID: 9851290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction-oxidation (redox) state regulation of matrix metalloproteinase activity in human fetal membranes.
    Buhimschi IA; Kramer WB; Buhimschi CS; Thompson LP; Weiner CP
    Am J Obstet Gynecol; 2000 Feb; 182(2):458-64. PubMed ID: 10694352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of activity of putative superoxide dismutase mimics. Direct analysis by stopped-flow kinetics.
    Weiss RH; Flickinger AG; Rivers WJ; Hardy MM; Aston KW; Ryan US; Riley DP
    J Biol Chem; 1993 Nov; 268(31):23049-54. PubMed ID: 8226820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid photooxidation in erythrocyte ghosts: sensitization of the membranes toward ascorbate- and superoxide-induced peroxidation and lysis.
    Girotti AW; Thomas JP; Jordan JE
    Arch Biochem Biophys; 1985 Jan; 236(1):238-51. PubMed ID: 2981506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.