These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 12049848)
1. Impact of protein binding on the availability and cytotoxic potency of organochlorine pesticides and chlorophenols in vitro. Gülden M; Mörchel S; Tahan S; Seibert H Toxicology; 2002 Jun; 175(1-3):201-13. PubMed ID: 12049848 [TBL] [Abstract][Full Text] [Related]
2. Factors influencing nominal effective concentrations of chemical compounds in vitro: medium protein concentration. Seibert H; Mörchel S; Gülden M Toxicol In Vitro; 2002 Jun; 16(3):289-97. PubMed ID: 12020603 [TBL] [Abstract][Full Text] [Related]
3. Validation of a prediction model for estimating serum concentrations of chemicals which are equivalent to toxic concentrations in vitro. Gülden M; Dierickx P; Seibert H Toxicol In Vitro; 2006 Oct; 20(7):1114-24. PubMed ID: 16580813 [TBL] [Abstract][Full Text] [Related]
4. Serum albumin binding at cytotoxic concentrations of chemicals as determined with a cell proliferation assay. Gülden M; Mörchel S; Seibert H Toxicol Lett; 2003 Feb; 137(3):159-68. PubMed ID: 12523958 [TBL] [Abstract][Full Text] [Related]
5. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals. Gülden M; Seibert H Aquat Toxicol; 2005 May; 72(4):327-37. PubMed ID: 15848252 [TBL] [Abstract][Full Text] [Related]
6. Factors influencing nominal effective concentrations of chemical compounds in vitro: cell concentration. Gülden M; Mörchel S; Seibert H Toxicol In Vitro; 2001 Jun; 15(3):233-43. PubMed ID: 11377096 [TBL] [Abstract][Full Text] [Related]
7. In vitro-in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro. Gülden M; Seibert H Toxicology; 2003 Aug; 189(3):211-22. PubMed ID: 12832154 [TBL] [Abstract][Full Text] [Related]
8. Assessing the estrogenic potential of organochlorine pesticides in primary cultures of male rainbow trout (Oncorhynchus mykiss) hepatocytes using vitellogenin as a biomarker. Okoumassoun LE; Averill-Bates D; Gagné F; Marion M; Denizeau F Toxicology; 2002 Sep; 178(3):193-207. PubMed ID: 12167306 [TBL] [Abstract][Full Text] [Related]
9. In vitro toxicity testing with microplate cell cultures: Impact of cell binding. Gülden M; Schreiner J; Seibert H Toxicology; 2015 Jun; 332():41-51. PubMed ID: 24291469 [TBL] [Abstract][Full Text] [Related]
10. Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals. Escher BI; Cowan-Ellsberry CE; Dyer S; Embry MR; Erhardt S; Halder M; Kwon JH; Johanning K; Oosterwijk MT; Rutishauser S; Segner H; Nichols J Chem Res Toxicol; 2011 Jul; 24(7):1134-43. PubMed ID: 21604782 [TBL] [Abstract][Full Text] [Related]
11. Composition, distribution, and potential toxicity of organochlorine mixtures in bed sediments of streams. Phillips PJ; Nowell LH; Gilliom RJ; Nakagaki N; Murray KR; VanAlstyne C Sci Total Environ; 2010 Jan; 408(3):594-606. PubMed ID: 19906406 [TBL] [Abstract][Full Text] [Related]
12. The organochlorine p,p'-dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnt/β-catenin signaling. Song L; Zhao J; Jin X; Li Z; Newton IP; Liu W; Xiao H; Zhao M Toxicol Lett; 2014 Aug; 229(1):284-91. PubMed ID: 24968063 [TBL] [Abstract][Full Text] [Related]
13. Sensitive determination of plasma protein binding of cationic drugs using mixed-mode solid-phase microextraction. Peltenburg H; Bosman IJ; Hermens JL J Pharm Biomed Anal; 2015 Nov; 115():534-42. PubMed ID: 26313333 [TBL] [Abstract][Full Text] [Related]
14. Tissue distribution of organochlorine pesticides in largemouth bass (Micropterus salmoides) from laboratory exposure and a contaminated lake. Dang VD; Kroll KJ; Supowit SD; Halden RU; Denslow ND Environ Pollut; 2016 Sep; 216():877-883. PubMed ID: 27394080 [TBL] [Abstract][Full Text] [Related]
15. Insecticide interaction with carrier and neuroproteins. Patyal SK; Nath A Indian J Exp Biol; 1992 Sep; 30(9):846-9. PubMed ID: 1478720 [TBL] [Abstract][Full Text] [Related]
16. Exposure of women to organochlorine pesticides in Southern Spain. Botella B; Crespo J; Rivas A; Cerrillo I; Olea-Serrano MF; Olea N Environ Res; 2004 Sep; 96(1):34-40. PubMed ID: 15261782 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical properties of some organophosphates in relation to their chronic toxicity. Freed VH; Haque R; Schmedding D; Kohnert R Environ Health Perspect; 1976 Feb; 13():77-81. PubMed ID: 1269510 [TBL] [Abstract][Full Text] [Related]
18. Organochlorine pesticides in wolves from Galicia. Carril González-Barros ST; Alvarez Piñeiro ME; Lozano JS; Lage Yusty MA Ecotoxicol Environ Saf; 2000 Mar; 45(3):247-52. PubMed ID: 10702343 [TBL] [Abstract][Full Text] [Related]
19. Temporal bioavailability of organochlorine pesticides and PCBs. Sethajintanin D; Anderson KA Environ Sci Technol; 2006 Jun; 40(12):3689-95. PubMed ID: 16830528 [TBL] [Abstract][Full Text] [Related]
20. The interaction of the phosphorothioate insecticides chlorpyrifos and parathion and their oxygen analogues with bovine serum albumin. Sultatos LG; Basker KM; Shao M; Murphy SD Mol Pharmacol; 1984 Jul; 26(1):99-104. PubMed ID: 6205248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]