BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 12050008)

  • 1. Nucleosome organization on Kluyveromyces lactis centromeric DNAs.
    Mattei S; Sampaolese B; De Santis P; Savino M
    Biophys Chem; 2002 Jun; 97(2-3):173-87. PubMed ID: 12050008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA superstructural features and nucleosomal organization of the two centromeres of Kluyveromyces lactis chromosome 1 and Saccharomyces cerevisiae chromosome 6.
    Del Cornò M; De Santis P; Sampaolese B; Savino M
    FEBS Lett; 1998 Jul; 431(1):66-70. PubMed ID: 9684867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The main role of the sequence-dependent DNA elasticity in determining the free energy of nucleosome formation on telomeric DNAs.
    Filesi I; Cacchione S; De Santis P; Rossetti L; Savino M
    Biophys Chem; 2000 Jan; 83(3):223-37. PubMed ID: 10647852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl-radical footprinting combined with molecular modeling identifies unique features of DNA conformation and nucleosome positioning.
    Shaytan AK; Xiao H; Armeev GA; Wu C; Landsman D; Panchenko AR
    Nucleic Acids Res; 2017 Sep; 45(16):9229-9243. PubMed ID: 28934480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability.
    Anselmi C; Bocchinfuso G; De Santis P; Savino M; Scipioni A
    Biophys J; 2000 Aug; 79(2):601-13. PubMed ID: 10919995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centromeric DNA of Kluyveromyces lactis.
    Heus JJ; Zonneveld BJ; Steensma HY; Van den Berg JA
    Curr Genet; 1990 Dec; 18(6):517-22. PubMed ID: 2076551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kluyveromyces marxianus small DNA fragments contain both autonomous replicative and centromeric elements that also function in Kluyveromyces lactis.
    Iborra F; Ball MM
    Yeast; 1994 Dec; 10(12):1621-9. PubMed ID: 7725797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-dependent nucleosome structural and dynamic polymorphism. Potential involvement of histone H2B N-terminal tail proximal domain.
    Sivolob A; Lavelle C; Prunell A
    J Mol Biol; 2003 Feb; 326(1):49-63. PubMed ID: 12547190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae.
    Heus JJ; Zonneveld BJ; de Steensma HY; van den Berg JA
    Mol Gen Genet; 1993 Jan; 236(2-3):355-62. PubMed ID: 8437580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae.
    Heus JJ; Zonneveld BJ; Steensma HY; Van den Berg JA
    Mol Gen Genet; 1994 May; 243(3):325-33. PubMed ID: 8190085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orchestrating the Specific Assembly of Centromeric Nucleosomes.
    Zasadzińska E; Foltz DR
    Prog Mol Subcell Biol; 2017; 56():165-192. PubMed ID: 28840237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome assembly on telomeric sequences.
    Rossetti L; Cacchione S; Fuà M; Savino M
    Biochemistry; 1998 May; 37(19):6727-37. PubMed ID: 9578556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple model explains the cell cycle-dependent assembly of centromeric nucleosomes in holocentric species.
    Câmara AS; Schubert V; Mascher M; Houben A
    Nucleic Acids Res; 2021 Sep; 49(16):9053-9065. PubMed ID: 34352103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylated nucleosome assembly on telomeric DNAs.
    Cacchione S; Luis Rodríguez J; Mechelli R; Franco L; Savino M
    Biophys Chem; 2003 Jun; 104(2):381-92. PubMed ID: 12878307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability.
    Anselmi C; Bocchinfuso G; De Santis P; Savino M; Scipioni A
    J Mol Biol; 1999 Mar; 286(5):1293-301. PubMed ID: 10064697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deformation energy-based model for predicting nucleosome dyads and occupancy.
    Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L
    Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.
    Dalal Y; Wang H; Lindsay S; Henikoff S
    PLoS Biol; 2007 Aug; 5(8):e218. PubMed ID: 17676993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of DNA superstructural features and histones aminoterminal domains on mononucleosome and dinucleosome positioning.
    De Santis P; Kropp B; Leoni L; Sampaolese B; Savino M
    Biophys Chem; 1996 Nov; 62(1-3):47-61. PubMed ID: 8962471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin structures of Kluyveromyces lactis centromeres in K. lactis and Saccharomyces cerevisiae.
    Heus JJ; Bloom KS; Zonneveld BJ; Steensma HY; Van den Berg JA
    Chromosoma; 1993 Nov; 102(9):660-7. PubMed ID: 8306828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical characterization of the centromere-specific nucleosome from budding yeast.
    Kingston IJ; Yung JS; Singleton MR
    J Biol Chem; 2011 Feb; 286(5):4021-6. PubMed ID: 21115484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.