BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12050132)

  • 1. A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements.
    Howell M; Inman GJ; Hill CS
    Development; 2002 Jun; 129(12):2823-34. PubMed ID: 12050132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis.
    Yeo CY; Chen X; Whitman M
    J Biol Chem; 1999 Sep; 274(37):26584-90. PubMed ID: 10473623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes.
    Howell M; Itoh F; Pierreux CE; Valgeirsdottir S; Itoh S; ten Dijke P; Hill CS
    Dev Biol; 1999 Oct; 214(2):354-69. PubMed ID: 10525340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development.
    Faure S; Lee MA; Keller T; ten Dijke P; Whitman M
    Development; 2000 Jul; 127(13):2917-31. PubMed ID: 10851136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mouse homologue of FAST-1 transduces TGF beta superfamily signals and is expressed during early embryogenesis.
    Weisberg E; Winnier GE; Chen X; Farnsworth CL; Hogan BL; Whitman M
    Mech Dev; 1998 Dec; 79(1-2):17-27. PubMed ID: 10349617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif.
    Germain S; Howell M; Esslemont GM; Hill CS
    Genes Dev; 2000 Feb; 14(4):435-51. PubMed ID: 10691736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel Cripto-related protein reveals an essential role for EGF-CFCs in Nodal signalling in Xenopus embryos.
    Dorey K; Hill CS
    Dev Biol; 2006 Apr; 292(2):303-16. PubMed ID: 16497290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of phosphorylated-Smad2-containing complexes by a novel Smad interaction motif.
    Randall RA; Howell M; Page CS; Daly A; Bates PA; Hill CS
    Mol Cell Biol; 2004 Feb; 24(3):1106-21. PubMed ID: 14729957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of zebrafish smad1, smad2 and smad5: the amino-terminus of smad1 and smad5 is required for specific function in the embryo.
    Müller F; Blader P; Rastegar S; Fischer N; Knöchel W; Strähle U
    Mech Dev; 1999 Oct; 88(1):73-88. PubMed ID: 10525190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smad4 and FAST-1 in the assembly of activin-responsive factor.
    Chen X; Weisberg E; Fridmacher V; Watanabe M; Naco G; Whitman M
    Nature; 1997 Sep; 389(6646):85-9. PubMed ID: 9288972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect regulation of derrière, a Xenopus mesoderm-inducing factor, by VegT.
    White RJ; Sun BI; Sive HL; Smith JC
    Development; 2002 Oct; 129(20):4867-76. PubMed ID: 12361977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smad3 inhibits transforming growth factor-beta and activin signaling by competing with Smad4 for FAST-2 binding.
    Nagarajan RP; Liu J; Chen Y
    J Biol Chem; 1999 Oct; 274(44):31229-35. PubMed ID: 10531318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus.
    Hoodless PA; Tsukazaki T; Nishimatsu S; Attisano L; Wrana JL; Thomsen GH
    Dev Biol; 1999 Mar; 207(2):364-79. PubMed ID: 10068469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes.
    Liu F; Pouponnot C; Massagué J
    Genes Dev; 1997 Dec; 11(23):3157-67. PubMed ID: 9389648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif.
    Randall RA; Germain S; Inman GJ; Bates PA; Hill CS
    EMBO J; 2002 Jan; 21(1-2):145-56. PubMed ID: 11782434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The novel Smad-interacting protein Smicl regulates Chordin expression in the Xenopus embryo.
    Collart C; Verschueren K; Rana A; Smith JC; Huylebroeck D
    Development; 2005 Oct; 132(20):4575-86. PubMed ID: 16192311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway.
    Zhao H; Cao Y; Grunz H
    Dev Biol; 2003 May; 257(2):278-91. PubMed ID: 12729558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos.
    Yasuo H; Lemaire P
    Curr Biol; 1999 Aug; 9(16):869-79. PubMed ID: 10469589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of human FAST-1, a TGF beta and activin signal transducer.
    Zhou S; Zawel L; Lengauer C; Kinzler KW; Vogelstein B
    Mol Cell; 1998 Jul; 2(1):121-7. PubMed ID: 9702198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of endogenous activin-like signals and regional specification of the Xenopus embryo.
    Lee MA; Heasman J; Whitman M
    Development; 2001 Aug; 128(15):2939-52. PubMed ID: 11532917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.