These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12051325)

  • 1. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.
    Frysinger GS; Gaines RB
    J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC-MS of ignitable liquids using solvent-desorbed SPME for automated analysis.
    Harris AC; Wheeler JF
    J Forensic Sci; 2003 Jan; 48(1):41-6. PubMed ID: 12570197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.
    Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C
    J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum.
    Waddell EE; Frisch-Daiello JL; Williams MR; Sigman ME
    J Forensic Sci; 2014 Sep; 59(5):1198-204. PubMed ID: 24962674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry.
    Schwartz Z; An Y; Konstantynova KI; Jackson GP
    Forensic Sci Int; 2013 Dec; 233(1-3):365-73. PubMed ID: 24314542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures.
    Baerncopf JM; McGuffin VL; Smith RW
    J Forensic Sci; 2011 Jan; 56(1):70-81. PubMed ID: 20854360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution.
    Lu Y; Chen P; Harrington PB
    Anal Bioanal Chem; 2009 Aug; 394(8):2061-7. PubMed ID: 19396432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive two-dimensional retention time alignment algorithm to enhance chemometric analysis of comprehensive two-dimensional separation data.
    Pierce KM; Wood LF; Wright BW; Synovec RE
    Anal Chem; 2005 Dec; 77(23):7735-43. PubMed ID: 16316183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.
    Nowlan M; Stuart AW; Basara GJ; Sandercock PM
    J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covariance mapping in the analysis of ignitable liquids by gas chromatography/mass spectrometry.
    Sigman ME; Williams MR
    Anal Chem; 2006 Mar; 78(5):1713-8. PubMed ID: 16503627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid GC-MS as a Screening Tool for Forensic Fire Debris Analysis.
    Capistran BA; Sisco E
    Forensic Chem; 2022 Sep; 30():. PubMed ID: 36733494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of micro-bore wall-coated open-tubular capillaries with low phase ratios for fast-gas chromatography-mass spectrometry: Application to ignitable liquids and fire debris.
    Roberson ZR; Goodpaster JV
    Sci Justice; 2019 Nov; 59(6):630-634. PubMed ID: 31606100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of analytical techniques for arson residues.
    Pert AD; Baron MG; Birkett JW
    J Forensic Sci; 2006 Sep; 51(5):1033-49. PubMed ID: 17018079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid alteration of several ignitable liquids of potential use in arsons.
    Martín-Alberca C; Carrascosa H; San Román I; Bartolomé L; García-Ruiz C
    Sci Justice; 2018 Jan; 58(1):7-16. PubMed ID: 29332697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.