These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12051437)

  • 21. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea.
    Skinner LJ; Enée V; Beurg M; Jung HH; Ryan AF; Hafidi A; Aran JM; Dulon D
    J Neurophysiol; 2003 Jul; 90(1):320-32. PubMed ID: 12611976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials.
    Zhang SY; Robertson D; Yates G; Everett A
    J Neurophysiol; 1999 Dec; 82(6):3307-15. PubMed ID: 10601462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.
    Altschuler RA; Dolan DF; Halsey K; Kanicki A; Deng N; Martin C; Eberle J; Kohrman DC; Miller RA; Schacht J
    Neuroscience; 2015 Apr; 292():22-33. PubMed ID: 25665752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ryanodine receptors and BK channels act as a presynaptic depressor of neurotransmission in cochlear inner hair cells.
    Beurg M; Hafidi A; Skinner LJ; Ruel J; Nouvian R; Henaff M; Puel JL; Aran JM; Dulon D
    Eur J Neurosci; 2005 Sep; 22(5):1109-19. PubMed ID: 16176352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system.
    Kennedy HJ
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):437-45. PubMed ID: 22526733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel Distribution of an Inner Hair Cell and Auditory Nerve Model for Real-Time Application.
    James R; Garside J; Plana LA; Rowley A; Furber SB
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1018-1026. PubMed ID: 30010597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression.
    Lopez-Poveda EA; Eustaquio-Martín A
    J Assoc Res Otolaryngol; 2006 Sep; 7(3):218-35. PubMed ID: 16718614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of spatiotemporal pattern correction using a computational model of the auditory periphery.
    Zeyl TJ; Bruce IC
    Ear Hear; 2014; 35(2):246-55. PubMed ID: 24326394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2016 Nov; 341():130-143. PubMed ID: 27594099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell.
    Schwid HA; Geisler CD
    J Acoust Soc Am; 1982 Nov; 72(5):1435-40. PubMed ID: 6129270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal maturation of auditory-nerve heterogeneity, as seen in spatial gradients of synapse morphology in the inner hair cell area.
    Liberman LD; Liberman MC
    Hear Res; 2016 Sep; 339():12-22. PubMed ID: 27288592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea.
    Patuzzi R; Sellick PM
    J Acoust Soc Am; 1983 Dec; 74(6):1734-41. PubMed ID: 6655131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and function of cochlear afferent innervation.
    Meyer AC; Moser T
    Curr Opin Otolaryngol Head Neck Surg; 2010 Oct; 18(5):441-6. PubMed ID: 20802334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamic range of inner hair cell and organ of Corti responses.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 2000 Mar; 107(3):1508-20. PubMed ID: 10738805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model.
    Rothman JS; Young ED; Manis PB
    J Neurophysiol; 1993 Dec; 70(6):2562-83. PubMed ID: 8120599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On population encoding and decoding of auditory information for bat echolocation.
    Reijniers J; Peremans H
    Biol Cybern; 2010 Apr; 102(4):311-26. PubMed ID: 20204397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA; Rich NC
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea.
    Ye Z; Goutman JD; Pyott SJ; Glowatzki E
    J Physiol; 2017 Jun; 595(11):3483-3495. PubMed ID: 28211069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.