BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12051725)

  • 1. Effects of remote mutation on the autolysis of HIV-1 PR: X-ray and NMR investigations.
    Kumar M; Kannan KK; Hosur MV; Bhavesh NS; Chatterjee A; Mittal R; Hosur RV
    Biochem Biophys Res Commun; 2002 Jun; 294(2):395-401. PubMed ID: 12051725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1.8A X-ray structure of C95M/C1095F double mutant of tethered HIV-1 protease dimer complexed with acetyl pepstatin.
    Prashar V; Hosur MV
    Biochem Biophys Res Commun; 2004 Oct; 323(4):1229-35. PubMed ID: 15451428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the mechanism of drug resistance: X-ray structure analysis of G48V/C95F tethered HIV-1 protease dimer/saquinavir complex.
    Prashar V; Bihani SC; Das A; Rao DR; Hosur MV
    Biochem Biophys Res Commun; 2010 Jun; 396(4):1018-23. PubMed ID: 20471372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid screening for HIV-1 protease inhibitor leads through X-ray diffraction.
    Pillai B; Kannan KK; Bhat SV; Hosur MV
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):594-6. PubMed ID: 14993705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling.
    Frutos S; Rodriguez-Mias RA; Madurga S; Collinet B; Reboud-Ravaux M; Ludevid D; Giralt E
    Biopolymers; 2007; 88(2):164-73. PubMed ID: 17236209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.
    Dandache S; Coburn CA; Oliveira M; Allison TJ; Holloway MK; Wu JJ; Stranix BR; Panchal C; Wainberg MA; Vacca JP
    J Med Virol; 2008 Dec; 80(12):2053-63. PubMed ID: 19040279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuating partially native-like topologies in the acid denatured ensemble of autolysis resistant HIV-1 protease.
    Rout MK; Hosur RV
    Arch Biochem Biophys; 2009 Feb; 482(1-2):33-41. PubMed ID: 19100236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into a mutation-assisted lateral drug escape mechanism from the HIV-1 protease active site.
    Sadiq SK; Wan S; Coveney PV
    Biochemistry; 2007 Dec; 46(51):14865-77. PubMed ID: 18052195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations.
    Ohtaka H; Schön A; Freire E
    Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance mechanism revealed by crystal structures of unliganded nelfinavir-resistant HIV-1 protease non-active site mutants N88D and N88S.
    Bihani SC; Das A; Prashar V; Ferrer JL; Hosur MV
    Biochem Biophys Res Commun; 2009 Nov; 389(2):295-300. PubMed ID: 19720046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.
    Wang W; Kollman PA
    J Mol Biol; 2000 Nov; 303(4):567-82. PubMed ID: 11054292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illustration of HIV-1 protease folding through a molten-globule-like intermediate using an experimental model that implicates alpha-crystallin and calcium ions.
    Dash C; Sastry M; Rao M
    Biochemistry; 2005 Mar; 44(10):3725-34. PubMed ID: 15751949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis.
    Strisovsky K; Tessmer U; Langner J; Konvalinka J; Kräusslich HG
    Protein Sci; 2000 Sep; 9(9):1631-41. PubMed ID: 11045610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.