BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 12051860)

  • 1. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9.
    Sato S; Raleigh DP
    J Mol Biol; 2002 Apr; 318(2):571-82. PubMed ID: 12051860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology.
    Li Y; Gupta R; Cho JH; Raleigh DP
    Biochemistry; 2007 Jan; 46(4):1013-21. PubMed ID: 17240985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the pH-dependent folding and stability of histidine point mutants allows characterization of the denatured state and transition state for protein folding.
    Horng JC; Cho JH; Raleigh DP
    J Mol Biol; 2005 Jan; 345(1):163-73. PubMed ID: 15567419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding.
    Luisi DL; Raleigh DP
    J Mol Biol; 2000 Jun; 299(4):1091-100. PubMed ID: 10843860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9.
    Kuhlman B; Luisi DL; Evans PA; Raleigh DP
    J Mol Biol; 1998 Dec; 284(5):1661-70. PubMed ID: 9878377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and stability of the N-terminal domain of the ribosomal protein L9: evidence for rapid two-state folding.
    Kuhlman B; Boice JA; Fairman R; Raleigh DP
    Biochemistry; 1998 Jan; 37(4):1025-32. PubMed ID: 9454593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9.
    Sato S; Xiang S; Raleigh DP
    J Mol Biol; 2001 Sep; 312(3):569-77. PubMed ID: 11563917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of the multidomain ribosomal protein L9: the two domains fold independently with remarkably different rates.
    Sato S; Kuhlman B; Wu WJ; Raleigh DP
    Biochemistry; 1999 Apr; 38(17):5643-50. PubMed ID: 10220353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH dependent thermodynamic and amide exchange studies of the C-terminal domain of the ribosomal protein L9: implications for unfolded state structure.
    Li Y; Horng JC; Raleigh DP
    Biochemistry; 2006 Jul; 45(28):8499-506. PubMed ID: 16834323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores.
    Choe SE; Matsudaira PT; Osterhout J; Wagner G; Shakhnovich EI
    Biochemistry; 1998 Oct; 37(41):14508-18. PubMed ID: 9772179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the novel fluorescent amino acid p-cyanophenylalanine offers a direct probe of hydrophobic core formation during the folding of the N-terminal domain of the ribosomal protein L9 and provides evidence for two-state folding.
    Aprilakis KN; Taskent H; Raleigh DP
    Biochemistry; 2007 Oct; 46(43):12308-13. PubMed ID: 17924662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct characterization of the folded, unfolded and urea-denatured states of the C-terminal domain of the ribosomal protein L9.
    Li Y; Picart F; Raleigh DP
    J Mol Biol; 2005 Jun; 349(4):839-46. PubMed ID: 15890362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain behavior during the folding of a thermostable phosphoglycerate kinase.
    Parker MJ; Spencer J; Jackson GS; Burston SG; Hosszu LL; Craven CJ; Waltho JP; Clarke AR
    Biochemistry; 1996 Dec; 35(49):15740-52. PubMed ID: 8961937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and kinetics of non-native interactions in protein folding: a single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state.
    Cho JH; Sato S; Raleigh DP
    J Mol Biol; 2004 May; 338(4):827-37. PubMed ID: 15099748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state.
    Luisi DL; Wu WJ; Raleigh DP
    J Mol Biol; 1999 Mar; 287(2):395-407. PubMed ID: 10080901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An early intermediate in the folding reaction of the B1 domain of protein G contains a native-like core.
    Park SH; O'Neil KT; Roder H
    Biochemistry; 1997 Nov; 36(47):14277-83. PubMed ID: 9400366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions.
    Kuhlman B; Luisi DL; Young P; Raleigh DP
    Biochemistry; 1999 Apr; 38(15):4896-903. PubMed ID: 10200179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding dynamics of the src SH3 domain.
    Grantcharova VP; Baker D
    Biochemistry; 1997 Dec; 36(50):15685-92. PubMed ID: 9398297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.