These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 12051972)

  • 1. Sign-reversal during persistent activation in mu-opioid signal transduction.
    Bruins Slot LA; Pauwels PJ; Colpaert FC
    J Theor Biol; 2002 Mar; 215(2):169-82. PubMed ID: 12051972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental realization of a signal transduction algorithm.
    Bruins Slot LA; Colpaert FC
    J Theor Biol; 1999 Sep; 200(1):39-48. PubMed ID: 10479538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling.
    Wang HY; Friedman E; Olmstead MC; Burns LH
    Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of G-proteins by morphine and codeine congeners: insights to the relevance of O- and N-demethylated metabolites at mu- and delta-opioid receptors.
    Thompson CM; Wojno H; Greiner E; May EL; Rice KC; Selley DE
    J Pharmacol Exp Ther; 2004 Feb; 308(2):547-54. PubMed ID: 14600248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical demonstration of mu-opioid receptor association with Gsalpha: enhancement following morphine exposure.
    Chakrabarti S; Regec A; Gintzler AR
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):217-24. PubMed ID: 15857684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of G(i)alpha2-protein in opioid tolerance and mu-opioid receptor downregulation in vivo.
    Yoburn BC; Gomes BA; Rajashekara V; Patel C; Patel M
    Synapse; 2003 Feb; 47(2):109-16. PubMed ID: 12454948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opioid peptide receptor studies. 16. Chronic morphine alters G-protein function in cells expressing the cloned mu opioid receptor.
    Xu H; Lu YF; Rothman RB
    Synapse; 2003 Jan; 47(1):1-9. PubMed ID: 12422367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute and chronic fentanyl administration causes hyperalgesia independently of opioid receptor activity in mice.
    Waxman AR; Arout C; Caldwell M; Dahan A; Kest B
    Neurosci Lett; 2009 Oct; 462(1):68-72. PubMed ID: 19559072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of agmatine on calcium signal in morphine-dependent CHO cells by activation of IRAS, a candidate for imidazoline I1 receptor.
    Wu N; Su RB; Liu Y; Lu XQ; Zheng JQ; Cong B; Li J
    Eur J Pharmacol; 2006 Oct; 548(1-3):21-8. PubMed ID: 16962578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [d-Ala2,N-MePhe4,Gly-ol5]enkephalin-induced internalization of the micro opioid receptor in the spinal cord of morphine tolerant rats.
    Trafton JA; Basbaum AI
    Neuroscience; 2004; 125(3):541-3. PubMed ID: 15099667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual effects of DAMGO [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) on adenylyl cyclase activity: implications for mu-opioid receptor Gs coupling.
    Szücs M; Boda K; Gintzler AR
    J Pharmacol Exp Ther; 2004 Jul; 310(1):256-62. PubMed ID: 14996951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in tolerance to anti-hyperalgesic effects between chronic treatment with morphine and fentanyl under a state of pain.
    Imai S; Narita M; Hashimoto S; Nakamura A; Miyoshi K; Nozaki H; Hareyama N; Takagi T; Suzuki M; Narita M; Suzuki T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2006 Nov; 26(5-6):183-92. PubMed ID: 17240843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal signaling activity of mu opioid receptor in mouse brain: role in narcotic dependence.
    Wang D; Raehal KM; Lin ET; Lowery JJ; Kieffer BL; Bilsky EJ; Sadée W
    J Pharmacol Exp Ther; 2004 Feb; 308(2):512-20. PubMed ID: 14600246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supersensitivity to mu-opioid receptor-mediated inhibition of the adenylyl cyclase pathway involves pertussis toxin-resistant Galpha protein subunits.
    Mostany R; Díaz A; Valdizán EM; Rodríguez-Muñoz M; Garzón J; Hurlé MA
    Neuropharmacology; 2008 May; 54(6):989-97. PubMed ID: 18384820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulator of G protein signaling 4 confers selectivity to specific G proteins to modulate mu- and delta-opioid receptor signaling.
    Leontiadis LJ; Papakonstantinou MP; Georgoussi Z
    Cell Signal; 2009 Jul; 21(7):1218-28. PubMed ID: 19324084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mu-Opioid agonists inhibit the enhanced intracellular Ca(2+) responses in inflammatory activated astrocytes co-cultured with brain endothelial cells.
    Hansson E; Westerlund A; Björklund U; Olsson T
    Neuroscience; 2008 Sep; 155(4):1237-49. PubMed ID: 18692967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mPKCI, a novel mu-opioid receptor interactive protein, in receptor desensitization, phosphorylation, and morphine-induced analgesia.
    Guang W; Wang H; Su T; Weinstein IB; Wang JB
    Mol Pharmacol; 2004 Nov; 66(5):1285-92. PubMed ID: 15496510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic morphine up-regulates G alpha12 and cytoskeletal proteins in Chinese hamster ovary cells expressing the cloned mu opioid receptor.
    Xu H; Wang X; Zimmerman D; Boja ES; Wang J; Bilsky EJ; Rothman RB
    J Pharmacol Exp Ther; 2005 Oct; 315(1):248-55. PubMed ID: 15987828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up-regulation of regulator of G protein signaling 4 expression in a model of neuropathic pain and insensitivity to morphine.
    Garnier M; Zaratin PF; Ficalora G; Valente M; Fontanella L; Rhee MH; Blumer KJ; Scheideler MA
    J Pharmacol Exp Ther; 2003 Mar; 304(3):1299-306. PubMed ID: 12604710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid modulation of micro-opioid receptor signaling in primary sensory neurons.
    Berg KA; Patwardhan AM; Sanchez TA; Silva YM; Hargreaves KM; Clarke WP
    J Pharmacol Exp Ther; 2007 Jun; 321(3):839-47. PubMed ID: 17347322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.