These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12052278)

  • 21. Combined Transcranial Direct Current Stimulation and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study.
    Alber R; Moser H; Gall C; Sabel BA
    PM R; 2017 Aug; 9(8):787-794. PubMed ID: 28082176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New evidence for therapies in stroke rehabilitation.
    Dobkin BH; Dorsch A
    Curr Atheroscler Rep; 2013 Jun; 15(6):331. PubMed ID: 23591673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial.
    Bergmann J; Krewer C; Bauer P; Koenig A; Riener R; Müller F
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):397-407. PubMed ID: 29265791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stroke rehabilitation 2009: old chestnuts and new insights.
    Kalra L
    Stroke; 2010 Feb; 41(2):e88-90. PubMed ID: 20075345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robot-assisted rehabilitation of hand function.
    Balasubramanian S; Klein J; Burdet E
    Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects.
    Barbeau H; Visintin M
    Arch Phys Med Rehabil; 2003 Oct; 84(10):1458-65. PubMed ID: 14586912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the understanding and development of modern physical neurorehabilitation methods: robotics and non-invasive brain stimulation.
    Edwards DJ
    J Neuroeng Rehabil; 2009 Jan; 6():3. PubMed ID: 19183466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial.
    Masiero S; Armani M; Rosati G
    J Rehabil Res Dev; 2011; 48(4):355-66. PubMed ID: 21674388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of two different protocols of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic supratentorial stroke: A single blind, randomized controlled trial.
    Picelli A; Brugnera A; Filippetti M; Mattiuz N; Chemello E; Modenese A; Gandolfi M; Waldner A; Saltuari L; Smania N
    Restor Neurol Neurosci; 2019; 37(2):97-107. PubMed ID: 30958319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial.
    Schwartz I; Sajin A; Fisher I; Neeb M; Shochina M; Katz-Leurer M; Meiner Z
    PM R; 2009 Jun; 1(6):516-23. PubMed ID: 19627940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke.
    Leon D; Cortes M; Elder J; Kumru H; Laxe S; Edwards DJ; Tormos JM; Bernabeu M; Pascual-Leone A
    Restor Neurol Neurosci; 2017; 35(4):377-384. PubMed ID: 28697574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical reorganization--effects of intensive therapy.
    Nelles G
    Restor Neurol Neurosci; 2004; 22(3-5):239-44. PubMed ID: 15502268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cortical stimulation as an adjuvant to upper limb rehabilitation after stroke.
    Harvey RL; Stinear JW
    PM R; 2010 Dec; 2(12 Suppl 2):S269-78. PubMed ID: 21172688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review.
    Kwakkel G; Kollen BJ; Krebs HI
    Neurorehabil Neural Repair; 2008; 22(2):111-21. PubMed ID: 17876068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Arm rehabilitation : Current concepts and therapeutic options].
    Platz T; Schmuck L
    Nervenarzt; 2016 Oct; 87(10):1057-1061. PubMed ID: 27531207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.
    Rodrigues TA; Goroso DG; Westgate PM; Carrico C; Batistella LR; Sawaki L
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S165-S170. PubMed ID: 28796648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuroprotection and stroke rehabilitation: modulation and enhancement of recovery.
    Romero JR; Babikian VL; Katz DI; Finklestein SP
    Behav Neurol; 2006; 17(1):17-24. PubMed ID: 16720957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke.
    Mirelman A; Bonato P; Deutsch JE
    Stroke; 2009 Jan; 40(1):169-74. PubMed ID: 18988916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stroke and neurodegenerative disorders. 3. Stroke: rehabilitation management.
    Bogey RA; Geis CC; Bryant PR; Moroz A; O'neill BJ
    Arch Phys Med Rehabil; 2004 Mar; 85(3 Suppl 1):S15-20. PubMed ID: 15034852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.